Последовательность

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Шагдаш Мар (обсуждение | вклад) в 10:00, 21 мая 2020 (Примеры: Поправки.). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

В математике последовательность — это пронумерованный набор каких-либо объектов, среди которых допускаются повторения и порядок имеет значение.
Нумерация чаще всего происходит натуральными числами.
Более общие случаи см. в разделе Вариации и обобщения. В данной статье последовательность подразумевается бесконечной; случаи конечной последовательности оговариваются особо.

Примеры

  • Примером конечной последовательности может служить последовательность домов на улице.
  • Последовательность простых чисел является одной из наиболее известных бесконечных числовых последовательностей.
  • Каждому действительному числу может быть сопоставлена собственная последовательность, называемая цепной дробью — причём для рациональных чисел она всегда конечна, для алгебраических иррациональных чисел бесконечна и периодична, а для трансцендентных чисел бесконечна и не периодична, хоть отдельные числа и могут встречаться в ней бесконечное число раз. Например, цепная дробь для числа конечна равна , а цепная дробь числа пи уже бесконечна и не периодична и выглядит следующим образом: .
  • В геометрии часто рассматривается последовательность правильных многоугольников, форма которых зависит только от количества вершин.
  • Последовательность может состоять даже из множеств - к примеру, можно составить последовательность, в которой на -ой позиции находится множество всех многочленов степени с целыми коэффициентами от одной переменной.
  • Следует отметить, что и сам многочлен от одной переменной можно рассматривать как конечную последовательность его коэффициентов.

Строгое определение

Пусть задано некоторое множество элементов произвольной природы.

Всякое отображение множества натуральных чисел в заданное множество называется последовательностью (элементов множества ).

Связанные определения

  • Образ натурального числа , а именно элемент , называется -ым членом последовательности, а порядковый номер члена последовательности — его индексом.
  • Подмножество множества , которое образовано элементами последовательности, называется носителем последовательности: пока индекс пробегает множество натуральных чисел, точка, «изображающая» члены последовательности, «перемещается» по носителю.
  • Подпоследовательностью последовательности называется зависящая от последовательность , где — возрастающая последовательность натуральных чисел. Подпоследовательность можно получить из изначальной последовательности, выкинув из неё некоторые члены.

Последовательности в математике

В математике рассматривают различные типы последовательностей:

Целью изучения всевозможных последовательностей является поиск закономерностей, прогноз будущих состояний и генерация последовательностей.

Обозначения

Последовательности вида

принято компактно записывать при помощи круглых скобок:

или .

Иногда используются фигурные скобки:

.

Конечные последовательности могут записываться в следующем виде:

.

Также последовательность может быть записана как

,

если функция была определена ранее, или же её обозначение может быть заменено на саму функцию. Например, при последовательность можно записать в виде .

Комментарии

  • Часто происходит путаница между последовательностью и её носителем. Фраза «элемент последовательности» некорректна, имеют место либо «член последовательности», либо «элемент носителя последовательности».
  • Любое отображение множества в себя также является последовательностью.

Вариации и обобщения

См. также

Примечания

Литература

  • Последовательность // Энциклопедический словарь юного математика / Сост. А. П. Савин. — М.: Педагогика, 1985. — С. 242-245. — 352 с.