Последовательность
В математике последовательность — это пронумерованный набор каких-либо объектов, среди которых допускаются повторения и порядок имеет значение.
Нумерация чаще всего происходит натуральными числами.
Более общие случаи см. в разделе Вариации и обобщения. В данной статье последовательность подразумевается бесконечной; случаи конечной последовательности оговариваются особо.
Примеры
- Примером конечной последовательности может служить последовательность домов на улице.
- Последовательность простых чисел является одной из наиболее известных бесконечных числовых последовательностей.
- Каждому действительному числу может быть сопоставлена собственная последовательность, называемая цепной дробью — причём для рациональных чисел она всегда конечна, для алгебраических иррациональных чисел бесконечна и периодична, а для трансцендентных чисел бесконечна и не периодична, хоть отдельные числа и могут встречаться в ней бесконечное число раз. Например, цепная дробь для числа конечна равна , а цепная дробь числа пи уже бесконечна и не периодична и выглядит следующим образом: .
- В геометрии часто рассматривается последовательность правильных многоугольников, форма которых зависит только от количества вершин.
- Последовательность может состоять даже из множеств - к примеру, можно составить последовательность, в которой на -ой позиции находится множество всех многочленов степени с целыми коэффициентами от одной переменной.
- Следует отметить, что и сам многочлен от одной переменной можно рассматривать как конечную последовательность его коэффициентов.
Строгое определение
Пусть задано некоторое множество элементов произвольной природы.
Всякое отображение множества натуральных чисел в заданное множество называется последовательностью (элементов множества ).
Связанные определения
- Образ натурального числа , а именно элемент , называется -ым членом последовательности, а порядковый номер члена последовательности — его индексом.
- Подмножество множества , которое образовано элементами последовательности, называется носителем последовательности: пока индекс пробегает множество натуральных чисел, точка, «изображающая» члены последовательности, «перемещается» по носителю.
- Подпоследовательностью последовательности называется зависящая от последовательность , где — возрастающая последовательность натуральных чисел. Подпоследовательность можно получить из изначальной последовательности, выкинув из неё некоторые члены.
Последовательности в математике
В математике рассматривают различные типы последовательностей:
- числовые последовательности;
- последовательности элементов метрического пространства;
- временны́е ряды как числовой, так и не числовой природы;
- последовательности элементов функционального пространства;
- последовательности состояний систем управления и автоматов.
Целью изучения всевозможных последовательностей является поиск закономерностей, прогноз будущих состояний и генерация последовательностей.
Обозначения
Последовательности вида
принято компактно записывать при помощи круглых скобок:
- или .
Иногда используются фигурные скобки:
- .
Конечные последовательности могут записываться в следующем виде:
- .
Также последовательность может быть записана как
- ,
если функция была определена ранее, или же её обозначение может быть заменено на саму функцию. Например, при последовательность можно записать в виде .
Комментарии
- Часто происходит путаница между последовательностью и её носителем. Фраза «элемент последовательности» некорректна, имеют место либо «член последовательности», либо «элемент носителя последовательности».
- Любое отображение множества в себя также является последовательностью.
- Последовательность элементов множества может быть рассмотрена, как упорядоченное подмножество , изоморфное множеству натуральных чисел.
- В математическом анализе важным понятием является предел числовой последовательности.
Вариации и обобщения
- Члены последовательности не обязательно должны нумероваться натуральными числами - к примеру, последовательность Фибоначчи может быть продолжена на отрицательные целые числа.
- Существуют и так называемые многомерные последовательности, нумеруемые элементами декартова произведения . К таким относится, например, многомерное расширение последовательности Туэ-Морса.
См. также
Примечания
Литература
- Последовательность // Энциклопедический словарь юного математика / Сост. А. П. Савин. — М.: Педагогика, 1985. — С. 242-245. — 352 с.
Для улучшения этой статьи по математике желательно:
|