Кватернионы Гурвица
В математике кватернионом Гурвица (или целым числом Гурвица) называется кватернион, компоненты которого либо все целые, либо все полуцелые (половины нечётных чисел; смесь целых и полуцелых недопустима). Множество всех кватернионов Гурвица
Можно показать, что H замкнуто относительно умножения и сложения, что делает его подкольцом кольца всех кватернионов.
Кватернион Липшица (или Целое Липшица) - это кватернион, все компоненты которого целые числа. Множество всех кватернионов Липшица
формирует подкольцо в кольце кватернионов Гурвица H.
Как группа, H является свободной абелевой группой с образующими {½(1+i+j+k), i, j, k}. Она, таким образом, образует решетку в R4. Эта решетка известна как решётка F4, поскольку она является корневой решёткой полупростой алгебры Ли F4. Кватернион Липшица L образует подрешётку в H.
Группа единиц в L образует кватернионную группу Q = {±1, ±i, ±j, ±k}. Группа единиц в H не является абелевой и образует группу 24-го порядка, известную как бинарная группа тетраэдра. Эта группа включает в себя 8 элементов Q и 16 кватернионов {½(±1±i±j±k)}, где знаки берутся в любой комбинации. Кватернионная группа является нормальной подгруппой бинарной группы тетраэдра U(H). Элементы U(H), имея норму 1, образуют вершины 24-гранника, вписанного в 3-сферу.
Норма кватерниона Гурвица, заданного формулой , всегда представляет собой целое число. По теореме Лагранжа любое неотрицательное целое число можно представить в виде суммы четырёх (или менее) квадратов. Таким образом, любое неотрицательное целое число является нормой некоего кватерниона Липшица (или Гурвица). Целое число Гурвица является простым элементом в том и только в том случае, когда его норма - простое число.
См. также
Ссылки
- Конвей Д. Х., Смит Д. А. Гурвицевы целые кватернионы // О кватернионах и октавах: об их геометрии, арифметике и симметриях / пер. С. М. Львовский — М.: МЦНМО, 2009. — С. 71—80. — 184 с. — 1000 экз. — ISBN 978-5-94057-517-7