SHA-2

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Snooker~ruwiki (обсуждение | вклад) в 10:51, 14 ноября 2008 (стилевые правки, оформление). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

SHA-2 (англ. Secure Hash Algorithm Version 2 — безопасный алгоритм хеширования, версия 2) — собирательное название однонаправленных хеш-функций SHA-224, SHA-256, SHA-384 и SHA-512. Предназначен для создания «отпечатков» или «дайджестов» сообщений произвольной битовой длины.

Хеш-функции разработаны Агенством национальной безопасности США и опубликованы Национальным институтом стандартов и технологий в Федеральном стандарте обработки информации FIPS PUB 180-2 в августе 2002 года.[1] В этот стандарт также вошла хеш-функция SHA-1, разработанная в 1995 году. В феврале 2004 года в FIPS PUB 180-2 была добавлена SHA-224[2]. В октябре 2008 года вышла новая редакция стандарта — FIPS PUB 180-3.[3]

В июле 2006 года появился стандарт RFC 4634 «Безопасные хеш-алгоритмы США (SHA и HMAC-SHA)», описывающий SHA-1 и всё семейство SHA-2.

Агентство национальной безопасности от лица государства выпустило патент на SHA-2[4] под лицензией Royalty Free.[5]

Алгоритм

Общее описание

Схема одной итерации алгоритмов SHA-2

Хеш-функции семейства SHA-2 построены на основе структуры Меркла — Дамгарда (англ.).

Исходное сообщение после дополнения разбивается на блоки, каждый блок — на 8 слов. Алгоритм пропускает каждый блок сообщения через цикл с 64-мя итерациями (80 для SHA-512/384). На каждой итерации 2 слова из восьми преобразуются, функцию преобразования задают остальные слова. Результаты обработки каждого блока складываются. Сумма есть значение хеш-функции. Подробнее — см. псевдокод.

Алгоритм использует следующие битовые операции:

В следующей таблице показаны некоторые технические характеристики различных вариантов SHA-2. «Внутреннее состояние» обозначает промежуточную хеш-сумму после обработки очередного блока данных:

Хеш-функция Длина дайджеста сообщения (бит) Длина внутреннего состояния (бит) Длина блока (бит) Максимальная
длина сообщения (бит)
Длина слова (бит) Количество итераций в цикле
SHA-256/224 256/224 256 512 264 − 1 32 64
SHA-512/384 512/384 512 1024 2128 − 1 64 80


Псевдокод SHA-256

Пояcнения:
Все переменные беззнаковые, имеют размер 32 бита и при вычислениях суммируются по модулю 232
message — исходное двоичное сообщение
m — преобразованное сообщение

Инициализация переменных
(первые 32 бита дробных частей квадратных корней первых восьми простых чисел [от 2 до 19]):
h0 := 0x6A09E667
h1 := 0xBB67AE85
h2 := 0x3C6EF372
h3 := 0xA54FF53A
h4 := 0x510E527F
h5 := 0x9B05688C
h6 := 0x1F83D9AB
h7 := 0x5BE0CD19

Таблица констант
(первые 32 бита дробных частей кубических корней первых 64-х простых чисел [от 2 до 311]):
k[0..63] :=
   0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
   0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
   0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
   0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
   0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
   0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
   0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
   0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2

Предварительная обработка:
m := message ǁ [единичный бит]
m := m ǁ [k нулевых бит], где k — наименьшее неотрицательное число такое, что битовая длина
           итогового сообщения будет ≡ 448 (mod 512) (сравнима по модулю 512 c 448)
m := m ǁ Длина(message) — длина исходного сообщения в битах в виде 64-битного числа
           с порядком байтов от старшего к младшему

Далее сообщения обрабатывается последовательными порциями по 512 бит:
разбить сообщение на куски по 512 бит
для каждого куска
    разбить кусок на 16 слов длиной 32 бита: w[0..15]

    Сгенерировать дополнительные 48 слов:
    для i от 16 до 63
        s0 := (w[i-15] rotr 7) xor (w[i-15] rotr 18) xor (w[i-15] shr 3)
        s1 := (w[i-2] rotr 17) xor (w[i-2] rotr 19) xor (w[i-2] shr 10)
        w[i] := w[i-16] + s0 + w[i-7] + s1

    Инициализация вспомогательных переменных:
    a := h0
    b := h1
    c := h2
    d := h3
    e := h4
    f := h5
    g := h6
    h := h7

    Основной цикл:
    для i от 0 до 63
        s0 := (a rotr 2) xor (a rotr 13) xor (a rotr 22)
        maj := (a and b) xor (a and c) xor (b and c)
        t2 := s0 + maj
        s1 := (e rotr 6) xor (e rotr 11) xor (e rotr 25)
        ch := (e and f) xor ((not e) and g)
        t1 := h + s1 + ch + k[i] + w[i]

        h := g
        g := f
        f := e
        e := d + t1
        d := c
        c := b
        b := a
        a := t1 + t2

    Добавить полученные значения к ранее вычисленному результату:
    h0 := h0 + a
    h1 := h1 + b 
    h2 := h2 + c
    h3 := h3 + d
    h4 := h4 + e
    h5 := h5 + f
    h6 := h6 + g 
    h7 := h7 + h

Получить итоговое значения хеша:
digest = hash = h0 ǁ h1 ǁ h2 ǁ h3 ǁ h4 ǁ h5 ǁ h6 ǁ h7

SHA-224 идентичен SHA-256, за исключением:

  • для инициализации переменных h0h7 используются другие начальные значения.
  • в итоговом хеше опускается значение h7.
Начальные значения переменных h0h7 в SHA-224:
h0 := 0xC1059ED8
h1 := 0x367CD507
h2 := 0x3070DD17
h3 := 0xF70E5939
h4 := 0xFFC00B31
h5 := 0x68581511
h6 := 0x64F98FA7
h7 := 0xBEFA4FA4

SHA-512 имеет идентичную структуру, но:

  • слова имеют длину 64 бита.
  • используется 80 раундов вместо 64.
  • начальные значения переменных и константы расширены до 64 бит.
  • в сдвиг в операциях rotr и shr производится на другое число позиций.

SHA-384 идентичен SHA-512, за исключением:

  • переменные h0..h7 имеют другие начальные значения.
  • в итоговом хеше опускаются значения h6 и h7.
Начальные значения переменных h0h7 в SHA-384
(первые 64 бита дробных частей квадратных корней простых чисел с девятого по шестнадцатое [от 23 до 53]):
h1 := CBBB9D5DC1059ED8
h2 := 629A292A367CD507
h3 := 9159015A3070DD17
h4 := 152FECD8F70E5939
h5 := 67332667FFC00B31
h6 := 8EB44A8768581511
h7 := DB0C2E0D64F98FA7
h8 := 47B5481DBEFA4FA4

Применение и сертификация

См. также Применение хеширования

SHA-224, SHA-256, SHA-384 и SHA-512 законом США допускаются к использованию в некоторых правительственных приложениях, включая использование в рамках других криптографических алгоритмов и протоколов, для защиты информации, не имеющей грифа секретности. Стандарт также допускает использование SHA-2 частными и коммерческими организациями.[6]

Хеш-функции SHA-2 используются для проверки целостности данных и в различных криптографических схемах. На 2008 год семейство хеш-функций SHA-2 не имеет такого широкого распространения, как MD5 и SHA-1, несмотря на обнаруженные у последних недостатки.

Некоторые примеры применения SHA-2 указаны в таблице:

Область применения Детали
S/MIME SHA-224, SHA-256, SHA-384 или SHA-512 дайджесты сообщений[7]
OpenLDAP SHA-256, SHA-384 или SHA-512 хеши паролей[8]
не указано название статьи SHA-256 дайджесты DNSKEY в протоколе DNSSEC[9]
X.509 SHA-224, SHA-256, SHA-384 и SHA-512 используются для создания электронной цифровой подписи сертификата[10]
PGP SHA-256, SHA-384, SHA-512 используются для создания электронной цифровой подписи[11]
IPSec Некоторые реализации поддерживают SHA-256 в протоколах ESP и IKE[12]
DSA Семейство SHA-2 используется для создания электронной цифровой подписи[13]
не указано название статьи Блочный алгоритм шифрования SHACAL-2 построен на основе хеш-функции SHA-256
Передача файлов Для надёжности передачи файлов по сети иногда указываются их SHA-2 дайджесты[14]


Как показали исследования[15], алгоритмы SHA-2 работают в 2—3 раза медленнее других популярных хеш-алгоритмов MD5, SHA-1, Tiger и RIPEMD-160.

Сертификация

Реализации SHA-2, как и всех Федеральных стандартов обработки информации, могут быть сертифицированы для использования в некоторых приложениях. Сертификация происходит в рамках процедуры Cryptographic Module Validation Program (англ.), которая проводится Национальным институтом стандартов и технологий США совместно с канадским Бюро безопасности связи.

На 5 ноября 2008 года было сертифицировано более 250-ти реализаций SHA-2, четыре из которых могли оперировать сообщениями с длиной в битах некратной восьми.[16]

Криптоанализ

На 2008 год хеш-функции SHA-2, в отличие от SHA-1, недостаточно изучены. В 2003 году Гилберт и Хандшух провели исследование SHA-2, но не нашли каких-либо уязвимостей.[17]

Криптоанализ хеш-функции подразумевает исследование устойчивости алгоритма по отношению, по меньшей мере, к следующим видам атак:

  • нахождение коллизий, т. е. разных сообщений с одинаковым хешем.
  • нахождение прообраза, т. е. неизвестного сообщения по его хешу.

От устойчивости хеш-функции к нахождению коллизий зависит безопасность электронной цифровой подписи с использованием данного хеш-алгоритма. От устойчивости к нахождению прообраза зависит безопасность хранения хешей паролей для целей аутентификации.

В марте 2008 года индийские исследователи Сомитра Кумар Санадия и Палаш Саркар опубликовали найденные ими коллизии для 22 итераций SHA-256 и SHA-512.[18] В сентябре того же года они представили метод конструирования коллизий для усечённых вариантов SHA-2 (21 итерация).[19] [20]

Ввиду алгоритмической схожести SHA-2 с SHA-1 и наличия у последней потенциальных уязвимостей ведутся поиски улучшенных альтернатив.[21][22] Новый стандарт будет назван SHA-3, он будет определен конкурсом, проводимым Национальным институтом стандартов и технологий в 2008—2012 гг.[23]

Примеры

Ниже приведены примеры хешей SHA-2. Для всех сообщений подразумевается использование кодировки ASCII.

SHA-224("The quick brown fox jumps over the lazy dog") 
 = 730E109B D7A8A32B 1CB9D9A0 9AA2325D 2430587D DBC0C38B AD911525
SHA-256("The quick brown fox jumps over the lazy dog") 
 = D7A8FBB3 07D78094 69CA9ABC B0082E4F 8D5651E4 6D3CDB76 2D02D0BF 37C9E592
SHA-384("The quick brown fox jumps over the lazy dog") 
 = CA737F10 14A48F4C 0B6DD43C B177B0AF D9E51693 67544C49 4011E331 7DBF9A50
   9CB1E5DC 1E85A941 BBEE3D7F 2AFBC9B1
SHA-512("The quick brown fox jumps over the lazy dog") 
 = 07E547D9 586F6A73 F73FBAC0 435ED769 51218FB7 D0C8D788 A309D785 436BBB64
   2E93A252 A954F239 12547D1E 8A3B5ED6 E1BFD709 7821233F A0538F3D B854FEE6

Малейшее изменение сообщения в подавляющем большинстве случаев приводит к совершенно другому хешу вследствие лавинного эффекта. К примеру, при изменении dog на cog получится:

SHA-256("The quick brown fox jumps over the lazy cog") 
 = E4C4D8F3 BF76B692 DE791A17 3E053211 50F7A345 B46484FE 427F6ACC 7ECC81BE

Примечания

  1. FIPS PUB 180-2 (англ.): Secure Hash Standard (SHS)
  2. FIPS PUB 180-2 (with Change Notice to include SHA-224) (англ.)
  3. FIPS PUB 180-3 (англ.)
  4. patent 6829355 (англ.)
  5. "Licensing Declaration for US patent 6829355". Дата обращения: 17 февраля 2008. {{cite journal}}: Cite journal требует |journal= (справка) (англ.)
  6. FIPS 180-2: Secure Hash Standard (SHS): 6. Applicability (англ.)
  7. draft-ietf-smime-sha2-08 (англ.): Using SHA2 Algorithms with Cryptographic Message Syntax
  8. SHA-2 hash support in OpenLDAP (англ.)
  9. RFC 4509: Use of SHA-256 in DNSSEC Delegation Signer (DS) Resource Records (RRs)
  10. RFC 4055: Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
  11. RFC 4880: OpenPGP Message Format
  12. Overview of Windows Vista Service Pack 1: New Standards (англ.)
  13. FIPS-186-2: Digital Signature Standard (DSS)]
  14. [1], [2]
  15. Speed Comparison of Popular Crypto Algorithms [3] (англ.)
  16. SHS Validation List (англ.)
  17. Henri Gilbert. "Security analysis of SHA-256 and sisters" (fee required). Lecture notes in computer science. Springer, Berlin. ISSN 0302-9743. Дата обращения: 30 января 2008. {{cite journal}}: Неизвестный параметр |coauthors= игнорируется (|author= предлагается) (справка)
  18. Somitra Kumar Sanadhya, Palash Sarkar. 22-Step Collisions for SHA-2  (англ.)
  19. Somitra Kumar Sanadhya, Palash Sarkar. Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash Family  (англ.)
  20. Презентация «Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash Family» (англ.)
  21. Schneier on Security: NIST Hash Workshop Liveblogging (5) (англ.)
  22. Hash cracked — heise Security (англ.)
  23. Tentative Timeline of the Development of New Hash Functions (англ.)

Рекомендуемая литература

См. также

Внешние ссылки

Стандарты

  • FIPS 180-3: Secure Hash Standard (SHS)
  • RFC 3874: A 224-bit One-way Hash Function: SHA-224
  • RFC 4634: US Secure Hash Algorithms (SHA and HMAC-SHA)

Реализации

  • The OpenSSL Project — широко используемая библиотека OpenSSL crypto включает свободные реализации SHA-224, SHA-256, SHA-384 и SHA-512
  • Crypto++ Library — свободная реализация криптографических алгоритмов на C++
  • Bouncy Castle Library — свободная библиотека Java и C# классов, которая включает реализации SHA-224, SHA-256, SHA-384 и SHA-512, а также других хеш-алгоритмов Whirlpool, Tiger, RIPEMD, ГОСТ Р 34.11-94, MD2, MD4 и MD5
  • jsSHA — свободная библиотека Javascript, включающая полное семейство хеш-функций SHA-2

Криптоанализ