Теорема Рунге
Теорема Рунге (также аппроксимационная теорема Рунге) в комплексном анализе — утверждение о возможности равномерного приближения голоморфной функции многочленами. Сформулирована Карлом Рунге в 1885 году.
Формулировка
[править | править код]Если — компактное пространство, — множество, содержащее хотя бы по одной точке из каждой ограниченной связной компоненты множества и голоморфная в окрестности , то существует последовательность рациональных функций с полюсами во множестве , приближающая функцию равномерно.
Обобщения
[править | править код]Всякая голоморфная в произвольной области функция может быть равномерно приближена последовательностью рациональных функций с полюсами вне , это утверждение также фигурирует как теорема Рунге.
Ещё более общий результат — теорема Мергеляна, утверждающая о необходимости и достаточности для равномерного приближения многочленами функции, голоморфной внутри компакта и непрерывной на нём, голоморфного продолжения во все ограниченные связные компоненты множества .
Литература
[править | править код]Рунге Теорема — статья из Математической энциклопедии. Чирка Е. М.
Это заготовка статьи по математике. Помогите Википедии, дополнив её. |
Для улучшения этой статьи по математике желательно:
|