то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа (шага, или разности прогрессии):
nooooobik
Член арифметической прогрессии с номером может быть найден по формулам
где — первый член прогрессии, — её разность, — член арифметической прогрессии с номером .
Доказательство формулы общего члена арифметической прогрессии
Пользуясь соотношением выписываем последовательно несколько членов прогрессии, а именно:
Заметив закономерность, делаем предположение, что . С помощью математической индукции покажем, что предположение верно для всех :
База индукции :
— утверждение истинно.
Переход индукции:
Пусть наше утверждение верно при , то есть . Докажем истинность утверждения при :
Итак, утверждение верно и при . Это значит, что для всех .■
Отметим, что в формулах общего члена -й член прогрессии есть линейная функция. Об этом говорит следующая теорема.
Для того чтобы последовательность являлась арифметической прогрессией, необходимо и достаточно, чтобы являлась линейной функцией (от )[1].
Доказательство
Необходимость. Пусть арифметическая прогрессия. Тогда, как было уже показано, , то есть . Так как есть линейная функция и , это значит, что и , т. е. — линейная функция, где .
Достаточность. Пусть есть линейная функция, т. е. . Так как и , то , тогда .
Рассмотрим .
Отсюда следует, что , где — величина постоянная. Тогда , а это значит по определению, что — арифметическая прогрессия.■
Суммы членов арифметической прогрессии с равными суммами номеров равны, т. е. .
Последовательность есть арифметическая прогрессия для любого её элемента выполняется условие
Доказательство характеристического свойства арифметической прогрессии
Необходимость.
Поскольку — арифметическая прогрессия, то для выполняются соотношения:
.
Сложив эти равенства и разделив обе части на 2, получим .
Достаточность.
Имеем, что для каждого элемента последовательности, начиная со второго, выполняется . Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду . Поскольку соотношения верны при всех , с помощью математической индукции покажем, что .
База индукции :
— утверждение истинно.
Переход индукции:
Пусть наше утверждение верно при , то есть . Докажем истинность утверждения при :
Но по предположению индукции следует, что . Получаем, что
Итак, утверждение верно и при . Это значит, что .
Обозначим эти разности через . Итак, , а отсюда имеем для . Поскольку для членов последовательности выполняется соотношение , то это есть арифметическая прогрессия.■
Сумма первых n членов арифметической прогрессии
Сумма первых членов арифметической прогрессии может быть найдена по формулам
, где — первый член прогрессии, — член с номером , — количество суммируемых членов.
— где — первый член прогрессии, — второй член прогрессии — член с номером .
, где — первый член прогрессии, — разность прогрессии, — количество суммируемых членов.
, если — нечётное натуральное число.
Доказательство
Запишем сумму двумя способами:
— та же сумма, только слагаемые идут в обратном порядке.
Теперь сложим оба равенства, последовательно складывая в правой части слагаемые, которые стоят на одной вертикали:
Покажем, что все слагаемые (все скобки) полученной суммы равны между собой. В общем виде каждое слагаемое можно подать в виде . Воспользуемся формулой общего члена арифметической прогрессии:
Получили, что каждое слагаемое не зависит от и равно . В частности, . Поскольку таких слагаемых , то
Третья формула для суммы получается подстановкой вместо . Что и так непосредственно следует из выражения для общего члена.
Замечание:
Вместо в первой формуле для суммы можно взять любое из других слагаемых , так как они все равны между собой.
Формулировка ещё одного факта: для всякой арифметической прогрессии при любом выполняется равенство:
Примечание: — сумма первых членов арифметической прогрессии.
Доказательство
1. Очевидно, что или
Прибавим к обеим частям и получим, что
2. Покажем, что
Это так, поскольку можно написать верное равенство:
Из него следует, что
3. Теперь докажем, что
Перепишем последнее как
Но гораздо лучше представить это равенство в виде Видно, что это характеристическое свойство арифметической прогрессии.
Значит, действительно
Сумма членов арифметической прогрессии от n-го до m-го
Сумма членов арифметической прогрессии с номерами от до может быть найдена по формулам
, где — член с номером , — член с номером , — количество суммируемых членов.
где — член с номером , — разность прогрессии, — количество суммируемых членов.
Произведение членов арифметической прогрессии
Произведением первых членов арифметической прогрессии называется произведение от до , то есть выражение вида Обозначение: .
Свойство произведения:
.
Если — нечётное натуральное число и [2], то произведение от до равно произведению их среднего арифметического и членов, равноотстоящих от него[3]:
Число множителей-скобок равно , а в самом произведении их составляет «штук».[4]
Сходимость арифметической прогрессии
Арифметическая прогрессия расходится при и сходится при . Причём
Доказательство
Записав выражение для общего члена и исследуя предел , получаем искомый результат.
Связь между арифметической и геометрической прогрессиями
Пусть — арифметическая прогрессия с разностью и число . Тогда последовательность вида есть геометрическая прогрессия со знаменателем .
Доказательство
Проверим характеристическое свойство для образованной геометрической прогрессии:
Воспользуемся выражением для общего члена арифметической прогрессии:
Итак, поскольку характеристическое свойство выполняется, то — геометрическая прогрессия. Её знаменатель можно найти, например, из соотношения .
Следствие: если последовательность положительных чисел образует геометрическую прогрессию, то последовательность их логарифмов образует арифметическую прогрессию.
Арифметические прогрессии высших порядков
Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:
1, 4, 9, 16, 25, 36, …
разности которых образуют простую арифметическую прогрессию с разностью 2:
3, 5, 7, 9, 11, …
Треугольные числа также образуют арифметическую прогрессию второго порядка, их разности образуют простую арифметическую прогрессию .
Таким образом, для треугольного
числа с номером имеет место равенство .
Тетраэдральные числа образуют арифметическую прогрессию третьего порядка, их разности являются треугольными числами.
Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.
Если — арифметическая прогрессия порядка , то существует многочлен , такой, что для всех выполняется равенство [5]
Примеры
Натуральный ряд — это арифметическая прогрессия, в которой первый член , а разность . Сумма первых членов натурального ряда называется «треугольным числом»:
— первые 5 членов арифметической прогрессии, в которой и .
Если все элементы некоторой последовательности равны между собой и равны некоторому числу , то это есть арифметическая прогрессия, в которой и . В частности, есть арифметическая прогрессия с разностью .
Формула для разности
Если известны два члена арифметической прогрессии, а также их номера в ней, то можно найти разность как
.
Сумма чисел от 1 до 100
Согласно легенде, школьный учитель математики юного Гаусса, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 5050.
Действительно, легко видеть, что решение сводится к формуле
то есть к формуле суммы первых чисел натурального ряда.
↑Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 135. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК22.141я71.6. — УДК373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
↑Эту формулу удобно использовать для выполнения итераций в программном коде, так как результат зависит от значения только двух величин: постоянного числа — разности, и члена, стоящего ровно по середине между первым и -м членом.
↑Пример применения формулы.
Пусть , где .
По формуле найдём произведение пяти первых членов. Количество сомножителей должно равняться . Причём первым сомножителем будет .
Далее .
Наконец, .