Омар Хайям
Омар Хайям | |
---|---|
перс. عمر خیام | |
Имя при рождении | Омар ибн Ибрахим Нишапури |
Дата рождения | 18 мая 1048 |
Место рождения | Нишапур, Великий Хорасан, Сельджукская империя |
Дата смерти | 4 декабря 1131 (83 года) |
Место смерти | |
Страна | Государство Сельджукидов |
Род деятельности | математик, астроном, поэт, поэт-песенник, философ, музыкант, астролог, писатель, физик |
Научная сфера | поэзия[1], математика[1] и астрономия[1] |
Научный руководитель | Бахманяр[2] |
Ученики | Музаффар аль-Асфизари, Аль-Хазини и Низами Арузи Самарканди |
Цитаты в Викицитатнике | |
Произведения в Викитеке | |
Медиафайлы на Викискладе |
Гия́с-ад-Ди́н Абу-ль-Фатх Ома́р ибн Ибрахи́м Хайя́м Нишапури́ (перс. غیاث الدین ابوالفتح عمر بن ابراهیم خیام نیشابورﻯ, Ома́р Хайя́м (перс. عمر خیام); 18 мая 1048[3], Нишапур, Государство Сельджукидов[4][5] или Hira[вд][6] — 4 декабря 1131[3], Нишапур, Государство Сельджукидов[4][5]) — персидский[7] философ, математик, астроном и поэт[8]. Известен во всём мире как выдающийся поэт, автор цикла философских рубаи; считается национальным поэтом в Иране, Таджикистане и Афганистане.
Внёс вклад в алгебру построением классификации кубических уравнений и их решением с помощью конических сечений. Омар Хайям также известен созданием самого точного из ныне используемых календарей[9]. Учениками Хайяма были такие учёные, как Музаффар аль-Асфизари и Абдуррахман аль-Хазини.
Имя
Гияс ад-Ди́н Абу-ль-Фатх Ома́р ибн Ибрахим Хайя́м Нишапури́.
- غیاث الدین Гияс-ад-Дин — хитаб, «помощь религии».
- ابوالفتح Абу-ль-Фатх — кунья.
- عمر Омар — исм (личное имя).
- بن ابراهیم ибн Ибрахим — насаб, «сын Ибрахима».
- خیام Хайям — тахаллус, «палаточный мастер» (предположительно, указание на ремесло отца; от слова «хайма» — палатка, от этого же слова предположительно происходит старорусское «хамовник» — текстильщик).
- نیشابورﻯ Нишапури — нисба, «из Нишапура».
Биография
Родился в городе Нишапур, который находится в Хорасане (ныне иранская провинция Хорасан-Резави). Омар был сыном палаточника, также у него была младшая сестра по имени Аиша. В 8 лет начал глубоко заниматься математикой, астрономией, философией. В 12 лет Омар стал учеником Нишапурского медресе. Позднее обучался в медресе Балха, Самарканда и Бухары. Там он с отличием окончил курс по мусульманскому праву и медицине, получив квалификацию хаки́ма, то есть врача[10]. Но медицинская практика его мало интересовала. Изучал сочинения известного математика и астронома Сабита ибн Курры, труды греческих математиков.
Детство Хайяма пришлось на жестокий период сельджукского завоевания Центральной Азии. Погибло множество людей, в том числе значительная часть учёных. Позже в предисловии к своей «Алгебре» Хайям напишет горькие слова:
Мы были свидетелями гибели учёных, от которых осталась небольшая многострадальная кучка людей. Суровость судьбы в эти времена препятствует им всецело отдаться совершенствованию и углублению своей науки. Большая часть тех, которые в настоящее время имеют вид учёных, одевают истину ложью, не выходя в науке за пределы подделки и лицемерия. И если они встречают человека, отличающегося тем, что он ищет истину и любит правду, старается отвергнуть ложь и лицемерие и отказаться от хвастовства и обмана, они делают его предметом своего презрения и насмешек.
В возрасте шестнадцати лет Хайям пережил первую в своей жизни утрату: во время эпидемии умер его отец, а потом и мать. Омар продал отцовский дом и мастерскую и отправился в Самарканд. В то время это был признанный на Востоке научный и культурный центр. В Самарканде Хайям становится вначале учеником одного из медресе, но после нескольких выступлений на диспутах он настолько поразил всех своей учёностью, что его сразу же сделали наставником.
Как и другие крупные учёные того времени, Омар не задерживался подолгу в каком-то городе. Всего через четыре года он покинул Самарканд и переехал в Бухару, где начал работать в хранилищах книг. За десять лет, что учёный прожил в Бухаре, он написал четыре фундаментальных трактата по математике.
В 1074 году его пригласили в Исфахан, центр государства Сельджукидов, ко двору сельджукского султана Мелик-шаха I. По инициативе и при покровительстве главного шахского визиря Низам аль-Мулька Омар становится духовным наставником султана. Через два года Мелик-шах назначил его руководителем дворцовой обсерватории, одной из крупнейших в мире[11]. Работая на этой должности, Омар Хайям не только продолжал занятия математикой, но и стал известным астрономом. С группой учёных он разработал солнечный календарь, более точный, чем григорианский. Составил «Маликшахские астрономические таблицы», включавшие небольшой звёздный каталог[12]. Здесь же написал «Комментарии к трудностям во введениях книги Евклида» (1077 г.) из трёх книг; во второй и третьей книгах исследовал теорию отношений и учение о числе[8]. Однако в 1092 году, со смертью покровительствовавшего ему султана Мелик-шаха и визиря Низам аль-Мулька, исфаханский период его жизни заканчивается. Обвинённый в безбожном вольнодумстве, поэт вынужден покинуть сельджукскую столицу.
О последних часах жизни Хайяма известно со слов его младшего современника — Бейхаки, ссылающегося на слова зятя поэта.
Однажды во время чтения «Книги об исцелении» Абу Али ибн Сины Хайям почувствовал приближение смерти (а было тогда ему уже за восемьдесят). Остановился он в чтении на разделе, посвященном труднейшему метафизическому вопросу и озаглавленному «Единое во множественном», заложил между листов золотую зубочистку, которую держал в руке, и закрыл фолиант. Затем он позвал своих близких и учеников, составил завещание и после этого уже не принимал ни пищи, ни питья. Исполнив молитву на сон грядущий, он положил земной поклон и, стоя на коленях, произнёс: «Боже! По мере своих сил я старался познать Тебя. Прости меня! Поскольку я познал Тебя, постольку я к Тебе приблизился». С этими словами на устах Хайям и умер.
В году 1113 в Балхе, на улице Работорговцев, в доме Абу Саида Джарре остановились ходжа имам Хайям и ходжа имам Музаффар Исфизари, а я присоединился к услужению им. Во время пира я услышал, как Доказательство Истины Омар сказал: «Могила моя будет расположена в таком месте, где каждую весну ветерок будет осыпать меня цветами». Меня эти слова удивили, но я знал, что такой человек не станет говорить пустых слов. Когда в году 1135 я приехал в Нишапур, прошло уже четыре года с тех пор, как тот великий закрыл лицо своё покрывалом земли и низкий мир осиротел без него. И для меня он был наставником. В пятницу я пошёл поклониться его праху и взял с собой одного человека, чтобы он указал мне его могилу. Он привёл меня на кладбище Хайре. Я повернул налево и у подножия стены, отгораживающей сад, увидел его могилу. Грушевые и абрикосовые деревья свесились из этого сада и, распростёрши над могилой цветущие ветви, всю могилу его скрыли под цветами. И мне пришли на память те слова, что я слышал от него в Балхе, и я разрыдался, ибо на всей поверхности земли и в странах Обитаемой четверти я не увидел бы для него более подходящего места. Бог, Святой и Всевышний, да уготовит ему место в райских кущах милостью своей и щедростью![13]
Научная деятельность
Математика
Хайяму принадлежит «Трактат о доказательствах задач алгебры и алмукабалы», в котором даётся классификация уравнений и излагается решение уравнений 1-й, 2-й и 3-й степени[14]. В первых главах трактата Хайям излагает алгебраический метод решения квадратных уравнений, описанный ещё ал-Хорезми. В следующих главах он развивает геометрический метод решения кубических уравнений, восходящий к Архимеду: корни данных уравнений в этом методе определялись как общие точки пересечения двух подходящих конических сечений[15]. Хайям привёл обоснование этого метода, классификацию типов уравнений, алгоритм выбора типа конического сечения, оценку числа (положительных) корней и их величины. Хайям не заметил, что кубическое уравнение может иметь три положительных действительных корня. До явных алгебраических формул Кардано Хайяму дойти не удалось, но он высказал надежду, что явное решение будет найдено в будущем.
Во введении к данному трактату Омар Хайям даёт первое дошедшее до нас определение алгебры как науки, утверждая: алгебра — это наука об определении неизвестных величин, состоящих в некоторых отношениях с величинами известными, причём такое определение осуществляется с помощью составления и решения уравнений[14].
В 1077 г. Хайям закончил работу над важным математическим трудом — «Комментарии к трудностям во введениях книги Евклида». Трактат состоял из трёх книг; первая содержала оригинальную теорию параллельных прямых, вторая и третья посвящены усовершенствованию теории отношений и пропорций[11]. В первой книге Хайям пытается доказать V постулат Евклида и заменяет его более простым и очевидным эквивалентом: Две сходящиеся прямые должны пересечься; по сути, в ходе этих попыток Омар Хайям доказал первые теоремы геометрий Лобачевского и Римана[8].
Далее Хайям рассматривает в своём трактате иррациональные числа как вполне законные, определяя равенство двух отношений как последовательное равенство всех подходящих частных в алгоритме Евклида. Евклидову теорию пропорций он заменил численной теорией[15].
При этом в третьей книге «Комментариев», посвящённой составлению (то есть умножению) отношений, Хайям по-новому трактует связь понятий отношения и числа. Рассматривая отношение двух непрерывных геометрических величин A и B, он рассуждает так: «Выберем единицу и сделаем её отношение к величине G равным отношению A к B, и будем смотреть на величину G как на линию, поверхность, тело или время; но будем смотреть на неё как на величину, отвлечённую разумом от всего этого и принадлежащую к числам, но не к числам абсолютным и настоящим[16], так как отношение A к B часто может не быть числовым… Следует, что бы ты знал, что эта единица является делимой и величина G, являющаяся произвольной величиной, рассматривается как число в указанном выше смысле»[17]. Высказавшись за введение в математику делимой единицы и нового рода чисел, Хайям теоретически обосновал расширение понятия числа до положительного действительного числа[18][15].
Ещё одна математическая работа Хайяма — «Об искусстве определения количества золота и серебра в состоящем из них теле»[8] — посвящена классической задаче на смешение, впервые решённой ещё Архимедом[19].
Астрономия
Хайям возглавлял группу астрономов Исфахана, которая в правление сельджукского султана Джалал ад-Дина Малик-шаха разработала принципиально новый солнечный календарь. Он был принят официально в 1079 г. Основным предназначением этого календаря была как можно более строгая привязка Новруза (то есть начала года) к весеннему равноденствию, понимаемому как вхождение солнца в зодиакальное созвездие Овна[20]. Так, 1 фарвардина (Новруз) 468 солнечного года хиджры, в которое был принят календарь, соответствовало пятнице, 9 рамазана 417 лунного года хиджры, и 19 фарвардина 448 года эры Йездигерда (15 марта 1079 г.). Для отличия от зороастрийского солнечного года, называвшегося «древним»[21] или «персидским»[22], новый календарь стали называть по имени султана — «Джалали»[23] или «Малеки»[24]. Количество дней в месяцах календаря «Джалали» варьировало в зависимости от сроков вступления солнца в тот или иной зодиакальный знак и могло колебаться от 29 до 32 дней[25]. Были предложены и новые названия месяцев, а также дней каждого месяца по образцу зороастрийского календаря. Однако они не прижились, и месяцы стали именоваться в общем случае именем соответствующего знака зодиака[26].
С чисто астрономической точки зрения календарь «Джалали» был точнее, чем древнеримский юлианский календарь, применявшийся в современной Хайяму Европе, и точнее, чем позднейший европейский григорианский календарь. Вместо цикла «1 високосный на 4 года» (юлианский календарь) или «97 високосных на 400 лет» (григорианский календарь) Хайямом принято было соотношение «8 високосных на 33 года». Другими словами, из каждых 33-х лет 8 были високосными и 25 обычными. Этот календарь точнее всех других известных соответствует году весенних равноденствий. Проект Омара Хайяма был утверждён и лёг в основу иранского календаря, который вплоть до настоящего времени действует в Иране в качестве официального с 1079 года[9][27].
Хайям составил «Маликшахов зидж», включающий звёздный каталог 100 ярких звёзд и посвящённый сельджукскому султану Маликшаху ибн Алп Арслану. Наблюдения зиджа датированы 1079 годом («на начало [первого] года високоса малики»); рукопись не сохранилась, но существуют списки с неё[28].
Творчество
Рубаи
При жизни Хайям был известен исключительно как выдающийся учёный. На протяжении всей жизни он писал стихотворные афоризмы (рубаи), в которых высказывал свои сокровенные мысли о жизни, о человеке, о его знании в жанрах хамрийят и зухдийят. С годами количество приписываемых Хайяму четверостиший росло и к XX веку превысило 5000. Возможно, свои сочинения приписывали Хайяму все те, кто опасался преследований за вольнодумство и богохульство. Точно установить, какие из них действительно принадлежат Хайяму (если он вообще сочинял стихи), практически невозможно. Некоторые исследователи считают возможным авторство Хайяма в отношении 300—500 рубаи[29].
Долгое время Омар Хайям был забыт. По счастливой случайности тетрадь с его стихами попала в викторианскую эпоху в руки английского поэта Эдварда Фицджеральда, который перевёл многие рубаи сначала на латынь, а потом на английский. В начале XX века рубаи в весьма вольном и оригинальном переложении Фицджеральда стали едва ли не самым популярным произведением викторианской поэзии[30]. Всемирная известность Омара Хайяма как глашатая гедонизма, отрицающего посмертное воздаяние, пробудила интерес и к его научным достижениям, которые были открыты заново и переосознаны.
Библиография
Математические, естественно-научные и философские трактаты
- Хайям Омар. О доказательстве задач алгебры и алмукабалы. Историко-математические исследования, 6, 1953. — С. 15—66.
- Хайям Омар. Комментарии к трудным постулатам книги Евклида. Историко-математические исследования, 6, 1953. — С. 67—107.
- Хайям Омар. Об искусстве определения золота и серебра в состоящем из них теле. Историко-математические исследования, 6, 1953. — С. 108—112.
- Хайям Омар. Трактаты. Дата обращения: 15 декабря 2009. / Перевод А. П. Юшкевича. Статья и комментарии Б. А. Розенфельда и А. П. Юшкевича. — М.: Изд. вост. лит., 1961.
- Хаййам Омар. Трактаты. / Перевод Б. А. Розенфельда. Редакция В. С. Сегаля и А. П. Юшкевича. Статья и комментарии Б. А. Розенфельда и А. П. Юшкевича. — М., 1962.
- Хайям Омар. Первый алгебраический трактат. Историко-математические исследования, 15, 1963. — С. 445—472.
- Хайям Омар. О прямом кустасе. Историко-математические исследования, 19, 1974. — С. 274—278.
- Хайям Омар. Речь о родах, которые образуются квартой. Историко-математические исследования, 19, 1974. — С. 279—284.
Издания рубаи на русском языке
Первым стал переводить Омара Хайяма на русский язык В. Л. Величко (1891)[31]. Хрестоматийный перевод рубаи на русский язык (1910) выполнил Константин Бальмонт.
Некоторые русскоязычные издания рубаи:
- Омар Хайям. Рубайят / Подготовка текста, перевод и предисловие Р. М. Алиева и М. Н. О. Османова под редакцией Е. Э. Бертельса. Две части. — М.: Изд-во восточной литературы, 1959.
- Омар Хайям. Рубайят / Перевёл с таджикского-фарси Владимир Державин. — Душанбе, Изд-во «ИРФОН», 1965.
- Омар Хайям. Рубаи. Пер. с фарси // Библиотека всемирной литературы, серия 1. — Т. 21. Ирано-Таджикская поэзия. — М.: Худ. литература, 1974. — С. 101—124.
- Омар Хайям. Рубаи. — Ташкент, изд.-во ЦК КП Узбекистана, 1978. — 104 с. — 200 000 экз.
- Омар Хайям. Рубаи: Лучшие переводы / Сост.,вступ.статья, примеч. Ш. М. Шамухамедова. — Ташкент, Изд.-во ЦК Компартии Узбекистана, 1982. — 128 с., 7 вкл. л., 200 000 экз. (Избранная лирика Востока. Издание второе, дополненное)
- Омар Хайям. Рубаи. Перевод С. Северцева // Великое Древо. Поэты Востока. М., 1984, с. 282—284.
- Омар Хайям. Рубаи: Пер. с перс.-тадж. / Вступ. ст. З. Н. Ворожейкиной и А. Ш. Шахвердова; Сост. и примеч. А. Ш. Шахвердова. — Л.: Сов. писатель, 1986. — 320 с. Тираж 100 000 экз. (Библиотека поэта. Большая серия. Издание третье).
- Омар Хайям. Рубайят. Пер. О. Румера; [вступ. ст. О. Румера; сост., коммент. И. Осипова]. — М.: Эксмо, 2008. — 256 с., ил. — (Стихи и биографии) — 5 000 экз.
- Омар Хайям: Рубайят. Сопоставление переводов / Малкович Р.Ш.. — СПб.: Издательство РХГА, 2012. — 696 с. — 500 экз. — ISBN 978-5-88812-542-7.
Память
- Хотя прижизненных изображений Омара Хайяма не сохранилось и его облик неизвестен, памятники поэту были установлены во многих странах (например, в Нишапуре, Ашхабаде, Бухаресте).
- В 1970 году Международный астрономический союз присвоил имя Омара Хайяма кратеру на обратной стороне Луны.
- 31 мая 1988 года в честь Омара Хайяма назван астероид (3095) Омархайям, открытый в 1980 году советским астрономом Л. В. Журавлёвой.
- В июне 2009 года Иран подарил отделу Организации Объединённых Наций в Вене (Австрия) Павильон персидских учёных, размещённый на центральной площади Мемориала Венского международного центра. Павильон персидских учёных включает в себя статуи четырёх известных учёных: Авиценны, Бируни, Закарии Рази (Рейз), Омара Хайяма[32]
- Первый в России памятник иранскому поэту и философу Омару Хайяму открыли в четверг, 4 августа 2016 года, в Астрахани в парке Студенческий возле АГУ под стихи на персидском языке[33]
-
Памятник Омару Хайяму в Бухаресте
-
Рубаи Омара Хайяма на Моричу Хани в Сараеве
-
Рубаи Омара Хайяма
-
Изображение Омара Хайяма
-
Планетарий имени Омара Хайяма в Нишапуре
Образ в искусстве
В литературе
- Гулиа Г. Д. Сказание об Омаре Хайяме. — М.: Художественная литература, 1980. — 432 с.
- Симашко Морис, Хадж Хайяма. — «Избранное», Алма-Ата, «Жазушы», 1983. — С. 400—423.
- Ильясов Я. Заклинатель змей; Башня молчания: Повести. — Ташкент: Изд-во лит. и искусства, 1986. — 496 с.
- Амин Маалуф. «Самарканд»
В театре
- В 1935 году азербайджанский писатель Гусейн Джавид написал пьесу «Хайям», посвящённую Омару Хайяму,
В кино
- «Омар Хайям» / «Omar Khayham» (1924) — США, в роли Фил Данхэм;
- «Омар Хайям» / «Omar Khayyam» (1957) — США, в главной роли Корнел Уайлд;
- «Омар Хайям» / «Ömer Hayyam» (1973) — Турция, в роли Орчун Сонат / Orçun Sonat.
- «Омар Хайям» / «Omar Al-Khayyam» (2002) — США, в роли Джихад Саад / Jihad Saad;
- «Хранитель: Легенда об Омаре Хайяме» (2005) — США, в главной роли — Бруно Ластра.
- «Прорицатель Омар Хайям. Хроника легенды» (2012) — Россия, сериал из 8 серий, в главной роли — Роман Матюнин
Примечания
- ↑ 1 2 3 Чешская национальная авторитетная база данных
- ↑ Mathematics Genealogy Project (англ.) — 1997.
- ↑ 1 2 Архив по истории математики Мактьютор — 1994.
- ↑ 1 2 Archivio Storico Ricordi — 1808.
- ↑ 1 2 Katalog der Deutschen Nationalbibliothek (нем.)
- ↑ ویکیپدیای فارسی (перс.) — 2003.
- ↑ Омар Хайям / Рейснер М. Л. // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- ↑ 1 2 3 4 Боголюбов, 1983, с. 501.
- ↑ 1 2 Климишин И. А. Календарь и хронология. — Изд. 3. — М.: Наука. Гл. ред. физ.-мат. лит., 1990. — С. 97—98, 227. — 478 с. — 105 000 экз. — ISBN 5-02-014354-5.
- ↑ НЭУ, 2000—2005, Умар Ҳайём.
- ↑ 1 2 Глезер, 1982, с. 121.
- ↑ Звездный каталог ал-Бируни с приложением каталогов Хайама и ат-Туси . Дата обращения: 2 мая 2010. Архивировано 15 мая 2013 года.. // Историко-астрономические исследования. Вып. VIII. 1962. С.83-192.
- ↑ Омар Хайям. Четверостишия. — Русич — 2002.
- ↑ 1 2 Глезер, 1982, с. 120.
- ↑ 1 2 3 Стройк, 1984, с. 97.
- ↑ То есть к натуральным числам.
- ↑ Омар Хайям. Математические трактаты / Пер. Б. А. Розенфельда // Историко-математические исследования. Вып. VI. 1952. — С. 105—106.
- ↑ Глезер, 1982, с. 124.
- ↑ Глезер, 1982, с. 121—122.
- ↑ согласно Naṣīr-al-Dīn Ṭūsī. Zīj-e īl-ḵānī
- ↑ qadīmī (перс. قديمى — «древний»)
- ↑ fārsī (перс. فارسى — «персидский»)
- ↑ jalālī (перс. جلالی)
- ↑ malekī (перс. ملکی)
- ↑ Климишин И. А. Календарь и хронология. — М.: Наука, 1981. — 192 с.
- ↑ В фарси имена знаков Зодиака представляют собой заимствования из арабского языка
- ↑ Heydari-Malayeri M. A concise review of the Iranian calendar. Архивная копия от 16 июля 2011 на Wayback Machine Paris Observatory, 2006.
- ↑ Хаййам Омар. Трактаты. Перевод Б. А. Розенфельда. Редакция В. С. Сегаля и А. П. Юшкевича. Статья и комментарии Б. А. Розенфельда и А. П. Юшкевича. М., 1962.
- ↑ Древо бытия Омара Хайяма. Афоризмы и изречения — Бутромеев Владимир Владимирович — Google Книги . Дата обращения: 2 октября 2017. Архивировано 5 июня 2014 года.
- ↑ BBC Radio 4 — In Our Time, The Rubaiyat of Omar Khayyam (англ.). Дата обращения: 1 июня 2014. Архивировано 25 мая 2014 года.
- ↑ Знакомство с творческим наследием Омара Хайяма в России | ИноСМИ — Все, что достойно перевода . Дата обращения: 28 апреля 2020. Архивировано 29 октября 2020 года.
- ↑ UNIS Monument to Be Inaugurated at the Vienna International Centre, ‘Scholars Pavilion’ donated to International Organizations in Vienna by Iran . Дата обращения: 3 августа 2017. Архивировано 26 декабря 2018 года.
- ↑ Читальня В Астрахани открыт памятник Омару Хайяму .
Литература
- Боголюбов А. Н. Математики. Механики. Биографический справочник. — Киев: Наукова думка, 1983. — 639 с.
- Глезер Г. И. История математики в школе. VII—VIII классы. — М.: Просвещение, 1982. — 240 с.
- История математики . Дата обращения: 15 марта 2008. с древнейших времён до начала XIX столетия (под ред. А. П. Юшкевича). — Т. I. — М.: Наука, 1972.
- Крамар Ф. Д. Об исследованиях Омара Хайяма и Насирэддина Туси по теории параллельных линий. — Алма-Ата, 1964.
- Национальная энциклопедия Узбекистана (узб.). — Ташкент, 2000—2005.
- Омар Хайям // Литература и язык. Современная иллюстрированная энциклопедия / Под редакцией проф. Горкина А.П.. — М.: Росмэн, 2006.
- Омар Хайям // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- М.-Н. Османов. Омар Хайям // Краткая литературная энциклопедия: В 9 т / Гл. ред. А. А. Сурков. — М.: Сов. энцикл., 1968. — Т. 5: Мурари — Припев.
- Розенфельд Б. А., Юшкевич А. П. Омар Хайям. — М.: Наука, 1965. — 194 с.
- Розенфельд Б. А., Юшкевич А. П. Теория параллельных линий на средневековом Востоке. IX—XIV вв. — М.: Наука, 1983. — 128 с.
- Стройк Д. Я. Краткий очерк истории математики. 4-е изд. — М.: Наука, 1984. — 284 с.
- Султанов Ш. З., Султанов К. З. [zzl.lib.ru/catalog/14_o.shtml Омар Хайям] .. — М.: Молодая гвардия, 1987. — 320 с. — (Жизнь замечательных людей. — Вып. 679).
- Шамсиддинов Д. Проблема общих понятий и научной абстракции в творчестве Омара Хайяма // Философские науки. — 1987. — № 7. — С. 101—105.
- Бобынин В. В. Омар Алькайями (т. XXIa, стр. 927)
- Крымский А. Е. Хейям, Омар (т. XXXVII, стр. 149)
Ссылки
- Русские стихотворные переводы рубаи Омара Хайяма (1891—1997) . Дата обращения: 7 августа 2010. Архивировано 28 ноября 2012 года.
- Биография и рубаи Омара Хайяма . Дата обращения: 30 мая 2011. Архивировано из оригинала 28 ноября 2012 года.
- Изречения Омара Хайяма . Дата обращения: 1 июня 2010. Архивировано 28 ноября 2012 года.
- Хайам в «Визуальном словаре» . Дата обращения: 15 марта 2008. Архивировано 28 ноября 2012 года.
- «Японский городовой» — самая полная коллекция поэзии Омара Хайама. Составитель: Андрей Андриенко . Дата обращения: 15 марта 2008. Архивировано из оригинала 22 января 2000 года.
- Омар Ибн-Ибрахим Нишапури Хайям — Литература Ирана X—XV в. Восток. ACADEMIA, Москва Ленинград, 1935 . Дата обращения: 15 марта 2008. Архивировано из оригинала 28 сентября 2007 года.
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист |
- Родившиеся 18 мая
- Родившиеся в 1048 году
- Персоналии по алфавиту
- Родившиеся в Нишапуре
- Умершие 4 декабря
- Умершие в 1131 году
- Умершие в Нишапуре
- Учёные по алфавиту
- Математики по алфавиту
- Математики средневекового Востока
- Математики Ирана
- Математики XI века
- Философы по алфавиту
- Философы Ирана
- Поэты по алфавиту
- Персидские поэты XI века
- Персидские поэты XII века
- Поэты Ирана
- Философы XI века
- Писатели по алфавиту
- Астрономы по алфавиту
- Астрономы средневекового Востока
- Астрологи XI века
- Персоналии:Самарканд
- Персоналии:Бухара
- Персидские философы