Кольцо (математика)
В абстрактной алгебре, кольцо́ — естественное обобщение целых чисел. Чуть точнее, это множество, на котором заданы две операции, «сложение» и «умножение», со свойствами, напоминающими сложение и умножение целых чисел.
Определения
Кольцо — это множество R, на котором заданы две бинарные операции: + и × (называемые сложение и умножение), со следующими свойствами:
- — коммутативность сложения;
- — ассоциативность сложения;
- — существование нейтрального элемента относительно сложения;
- — существование обратного элемента относительно сложения;
- — ассоциативность умножения (некоторые авторы не требуют выполнения этой аксиомы)
- — дистрибутивность.
Иными словами, кольцо — это алгебра , такая что алгебра — абелева группа, алгебра — полугруппа и операция дистрибутивна относительно .
Кольца могут обладать следующими свойствами:
- наличие единицы: (кольцо с единицей);
- коммутативность умножения: (коммутативное кольцо);
- отсутствие делителей нуля: .
Обычно под кольцом понимают ассоциативное кольцо с единицей.
Кольца, для которых выполнены все вышеперечисленные условия, называются целостными (иногда также областями целостности или просто областями, хотя условие коммутативности не всегда считается обязательным).
Связанные определения
- Непустое подмножество назывется подкольцом , если само является кольцом относительно операций, определенных в .
- Ассоциативное кольцо с единицей , в котором каждый ненулевой элемент обратим, называется телом.
- Коммутативное тело называется полем.
Простейшие свойства
Пусть — кольцо, тогда выполнены следующие свойства:
Примеры
- — целые числа (с обычным сложением и умножением).
- — кольцо вычетов по модулю натурального числа n.
- — кольцо рациональных чисел, являющееся полем.
- — кольцо вещественных чисел, являющееся полем.
- — кольцо многочленов от n переменных над полем .
- Кольцо алгебраических целых чисел.
- — кольцо гауссовых целых чисел.
- Кольцо когомологий.
См. также
- Артиново кольцо
- Дистрибутивное кольцо
- Евклидово кольцо
- Кольцо Безу
- Кольцо главных идеалов
- Локальное кольцо
- Нётерово кольцо
- Первичное кольцо
- Полулокальное кольцо
- Полупервичное кольцо
- Полупростое кольцо
- Полуцепное кольцо
- Простое кольцо
- Ассоциативное кольцо
- Кольца близкие к ассоциативным
- Цепное кольцо
Ссылки
- Винберг Э. Б. Курс алгебры. М.: издательство «Факториал Пресс», 2002, ISBN 5-88688-060-7.
- Бельский А., Садовский Л. Кольца. Квант № 2, 1974.
- Кольцо алгебраическое в Большой советской энциклопедии.