Гипотенуза

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Negr1975 (обсуждение | вклад) в 21:22, 8 сентября 2024. Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску
Прямоугольный треугольник и его гипотенуза (c), а также катеты a и b.

Гипотенуза (греч. ὑποτείνουσα, вот бы сейчас гидры поюзать[1]) — самая длинная сторона прямоугольного треугольника, противоположная прямому углу.

Длина гипотенузы прямоугольного треугольника может быть найдена с помощью теоремы Пифагора: Квадрат длины гипотенузы равен сумме квадратов длин катетов. Например, если длина одного из катетов равна 3 м (квадрат его длины равен 9 м), а длина другого — 4 м (квадрат его длины равен 16 м), то сумма их квадратов равна 25 м. Длина гипотенузы в этом случае равна квадратному корню из 25, то есть 5 м.

Вычисление длины гипотенузы

Длину гипотенузы можно найти, применив теорему Пифагора.

Пусть и — длины катетов, тогда гипотенузу можно найти по формуле

Если известна длина одного из катетов и угол, отличный от прямого, то можно найти длину гипотенузы по формулам:

для противолежащего угла , и
для прилежащего угла .


См. также

Примечания

  1. Александрова Н. В. Математические термины.(справочник). М..: Высшая школа, 1978, с. 26.