Матрица перехода

Материал из Википедии — свободной энциклопедии
Это текущая версия страницы, сохранённая Matsievsky (обсуждение | вклад) в 13:07, 15 октября 2024 (Преамбула). Вы просматриваете постоянную ссылку на эту версию.
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

В линейной алгебре базис векторного пространства размерности [1] — это последовательность из векторов , таких, что любой вектор пространства может быть представлен единственным образом в виде линейной комбинации базисных векторов. При заданном базисе операторы представляются в виде квадратных матриц. Так как часто есть необходимость работать с несколькими базисами в одном и том же векторном пространстве, необходимо иметь правило перевода координат векторов и операторов из базиса в базис. Такой переход осуществляется с помощью матрицы перехода, или замены.

Определение

[править | править код]

Если векторы выражаются через векторы как:

.
.
.
.

то матрица перехода от базиса к базису ) будет:

Использование

[править | править код]

При умножении матрицы, обратной к матрице перехода, на столбец, составленный из коэффициентов разложения вектора по базису , мы получаем тот же вектор, выраженный через базис .

Для того, чтобы повернуть вектор на угол θ против часовой стрелки, можно умножить матрицу поворота на него:

Матрицы наиболее распространённых преобразований
В двумерных координатах В однородных двумерных координатах В однородных трёхмерных координатах
Масштабирование

При a, b и c — коэффициенты масштабирования соответственно по осям OX, OY и OZ:

Поворот

При φ — угол поворота изображения в двухмерном пространстве

По часовой стрелке

Относительно OX на угол φ

Относительно OY на угол ψ

Против часовой стрелки

Относительно OZ на угол χ

Перемещение

При a, b и c — смещение соответственно по осям OX, OY и OZ.

В неоднородных координатах не имеет матричного представления.

  • Матрица перехода является невырожденной. То есть определитель этой матрицы не равен нулю.

Пример поиска матрицы

[править | править код]

Найдём матрицу перехода от базиса к единичному базису путём элементарных преобразований

следовательно

Примечания

[править | править код]
  1. David C. Lay, Steven R. Lay, Judi J. McDonald. Linear Algebra and Its Applications, Global Edition (англ.). — Pearson, 2021. — P. 247. — 755 p.