Кварк
В статье не хватает ссылок на источники (см. рекомендации по поиску). |
Ква́рк — фундаментальная частица в Стандартной модели, обладающая электрическим зарядом, кратным e/3, и не наблюдающаяся в свободном состоянии. Из кварков состоят адроны, в частности, протон и нейтрон. В настоящее время известно 6 разных «сортов» (чаще говорят — «ароматов») кварков, свойства которых даны в таблице. Кроме того, для калибровочного описания сильного взаимодействия постулируется, что кварки обладают и дополнительной внутренней характеристикой, называемой «цвет». Каждому кварку соответствует антикварк с противоположными квантовыми числами.
Гипотеза о том, что адроны построены из специфических субъединиц, была впервые выдвинута М. Гелл-Манном и, независимо от него, Дж. Цвейгом в 1964 году.
Слово «кварк» было заимствовано Гелл-Манном из романа Дж. Джойса «Поминки по Финнегану», где в одном из эпизодов звучит фраза «Three quarks for Muster Mark!» (обычно переводится как «Три кварка для мюстера Марка!»). Само слово «quark» в этой фразе предположительно является звукоподражанием крику морских птиц. Дж. Цвейг называл их тузами, но данное название не прижилось и забылось — возможно, потому, что тузов четыре, а кварков в первоначальной модели было три.
Свойства кварков
название | англ. | заряд | масса | |
---|---|---|---|---|
Первое поколение | ||||
d | нижний | down | −1/3 | ~ 5 МэВ/c2 |
u | верхний | up | +2/3 | ~ 3 МэВ/c2 |
Второе поколение | ||||
s | странный | strange | −1/3 | 95 ± 25 МэВ/c2 МэВ/c2 |
c | очарованный | charm | +2/3 | 1,8 ГэВ/c2 |
Третье поколение | ||||
b | прелестный | beauty (bottom) | −1/3 | 4,5 ГэВ/c2 |
t | истинный | truth (top) | +2/3 | 171 ГэВ/c2 |
В силу неизвестных пока причин, кварки естественным образом группируются в три так называемые поколения (они так и представлены в таблице). В каждом поколении один кварк обладает зарядом +2/3, а другой — (−1/3). Подразделение на поколения распространяется также и на лептоны.
Кварки участвуют в сильных, слабых и электромагнитных взаимодействиях. Сильные взаимодействия (обмен глюоном) могут изменять цвет кварка, но не меняют его аромат. Слабые взаимодействия, наоборот, не меняют цвет, но могут менять аромат. Необычные свойства сильного взаимодействия приводят к тому, что одиночный кварк не может удалиться на какое-либо заметное расстояние от других кварков, а значит, кварки не могут наблюдаться в свободном виде (явление, получившее название конфайнмент). Разлететься могут лишь «бесцветные» комбинации кварков — адроны.
Реальность кварков
Из-за непривычного свойства сильного взаимодействия — конфайнмента — часто неспециалистами задаётся вопрос: а откуда мы уверены, что кварки существуют, если их никто никогда не увидит в свободном виде? Может, они — лишь математическая абстракция, и протон вовсе не состоит из них?
Причины того, что кварки считаются реально существующими объектами, таковы:
- Во-первых, в 1960-х годах стало ясно, что все многочисленные адроны подчиняются более-менее простой классификации: сами собой объединяются в мультиплеты и супермультиплеты. Иными словами, при описании всех этих мультиплетов требуется очень небольшое число свободных параметров. То есть, все адроны обладают небольшим числом степеней свободы: все барионы с одинаковым спином обладают тремя степенями свободы, а все мезоны — двумя. Первоначально гипотеза кварков как раз и заключалась в этом наблюдении, и слово «кварк», по сути, было краткой формой фразы «суб-адронная степень свободы».
- Далее, при учете спина оказалось, что каждой такой степени свободы можно приписать спин ½ и, кроме того, каждой паре кварков можно приписать орбитальный момент — словно они и есть частицы, которые могут вращаться друг относительно друга. Из этого предположения возникло стройное объяснение и всему разнообразию спинов адронов, а также их магнитных моментов.
- Более того, с открытием новых частиц выяснилось, что никаких модификаций теории не требуется: каждый новый адрон удачно вписывался в кварковую конструкцию без каких-либо её перестроек (если не считать добавления новых кварков).
- Как проверить, что заряд у кварков действительно дробный? Кварковая модель предсказывала, что при аннигиляции высокоэнергетических электрона и позитрона будут рождаться не сами адроны, а сначала пары кварк-антикварк, которые потом уже превращаются в адроны. Результат расчёта течения такого процесса напрямую зависел от того, каков заряд рождённых кварков. Эксперимент полностью подтвердил эти предсказания.[источник не указан 5708 дней]
- С наступлением эры ускорителей высокой энергии стало возможным изучать распределение импульса внутри, например, протона. Выяснилось, что импульс в протоне не распределён равномерно по нему, а частями сосредоточен в отдельных степенях свободы. Эти степени свободы назвали партонами (от англ. part — часть). Более того, оказалось, что партоны, в первом приближении, обладают спином ½ и теми же зарядами, что и кварки. С ростом энергии оказалось, что количество партонов растёт, но такой результат и ожидался в кварковой модели при сверхвысоких энергиях.[источник не указан 5708 дней]
- С повышением энергии ускорителей стало возможным также попытаться выбить отдельный кварк из адрона в высокоэнергетическом столкновении. Кварковая теория давала чёткие предсказания, как должны были выглядеть результаты таких столкновений — в виде струй. Такие струи действительно наблюдались в эксперименте. Заметим, что если бы протон ни из чего не состоял, то струй бы заведомо не было.
- При высокоэнергетических столкновениях адронов вероятность того, что адроны рассеются на некоторый угол без разрушения уменьшается с ростом величины угла. Теория предсказывает, что скорость этого уменьшения зависит от числа кварков, из которых состоит адрон.[источник не указан 5708 дней] Эксперименты подтвердили, что, например, для протона скорость получается точно такая, какая ожидается для объекта, состоящего из трёх кварков.[источник не указан 5708 дней] Аналогичное согласие наблюдается и для других адронов.[источник не указан 5708 дней]
В целом, можно сказать, что гипотеза кварков и всё, что из неё вытекает (в частности, КХД), является наиболее консервативной гипотезой относительно строения адронов, которая способна объяснить имеющиеся экспериментальные данные. Попытки обойтись без кварков наталкиваются на трудности с описанием всех тех многочисленных экспериментов, которые очень естественно описывались в кварковой модели.
Альтернативные модели
- Модель Сакаты (Shoichi Sakata), известная также как модель Ферми — Янга — Сакаты. Базис — p, n, Λ и их античастицы. Описывала все мезоны и барионы, известные на момент публикации.[1] Впоследствии базис расширялся до 4 частиц.[2]
- Барионные-антибарионные нонеты.[3]
Открытые вопросы
В отношении кварков остаются вопросы, на которые пока нет ответа:
- почему ровно три цвета?
- почему ровно три поколения кварков?
- случайно ли совпадение числа цветов и числа поколений?
- случайно ли совпадение этого числа с размерностью пространства в нашем мире?
- откуда берётся такой разброс в массах кварков?
- из чего состоят кварки? (См.: Состав кварка)
Впрочем, история с адронами и кварками, а также симметрия между кварками и лептонами, наводит на подозрение, что кварки могут сами состоять из чего-то более простого. Рабочее название для гипотетических частиц-составляющих кварков — преоны. С точки зрения эксперимента, до сих пор никаких подозрений на неточечную структуру кварков не возникало. Однако попытки построить такие теории делаются независимо от эксперимента. Серьёзного успеха в этом направлении пока нет.
Другой подход состоит в построении теории Великого Объединения. Польза от такой теории была бы не только в объединении сильного и электрослабого взаимодействий, но и в едином описании лептонов и кварков. Несмотря на активные исследования, построить такую теорию также пока не удалось.
Примечания
- ↑ S. Sakata. On a composite model for new particles Progr. Theor. Phys. 16 (1956), 686
- ↑ Y. Katayama, K. Matumoto, S. Tanaka, E. Yamada. Possible unified models of elementary particles with two neutrinos. Progr. Theor. Phys. 28 (1962), 675
- ↑ C. Z. Yuan, X. H. Mo, P. Wang. Baryon-antibaryon nonets
Ссылки
- Экспериментальная информация о кварках на сайте Particle Data Group