Ранг матрицы

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Satels (обсуждение | вклад) в 04:19, 27 июля 2009. Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Пусть задана любая матрица А с m строк и n столбцов. Рангом системы строк (столбцов) матрицы А называется максимальное число линейно независимых строк(столбцов). Несколько строк (столбцов) называются линейно-независимыми, если ни одна из них не выражается линейно через другие. Ранг системы строк всегда равен рангу системы столбцов и это число называется рангом матрицы. Ранг матрицы — наивысший из порядков миноров этой матрицы, отличных от нуля. Ранг матрицы равен наибольшему числу линейно независимых строк (или столбцов) матрицы.

Обычно ранг матрицы обозначается () или . Оба обозначения пришли к нам из иностранных языков, потому и употребляться могут оба. Последний вариант свойственен для английского языка, в то время как первый — для немецкого, французского и ряда других языков.

Определение

Пусть — прямоугольная матрица.

Тогда по определению рангом матрицы является:

  • нуль, если — нулевая матрица;
  • число , где — минор матрицы порядка , а — окаймляющий к нему минор порядка , если они существуют.

Теорема (о корректности определения рангов). Пусть все миноры матрицы порядка равны нулю (). Тогда , если они существуют. Шаблон:/рамка

Связанные определения

  • Ранг матрицы размера называют полным, если .
  • Базисный минор матрицы — любой минор матрицы порядка , где .
    • Строки и столбцы, на пересечении которых стоит базисный минор, называются базисными строками и столбцами. (Они определены неоднозначно в силу неоднозначности базисного минора.)

Пример

Матрица

имеет ранг 2, так как есть минор второго порядка, отличный от нуля, а миноров третьего порядка нет.

Свойства

  • Теорема (о базисном миноре): Пусть — базисный минор матрицы , тогда:
    1. базисные строки и базисные столбцы линейно независимы;
    2. любая строка (столбец) матрицы есть линейная комбинация базисных строк (столбцов).
  • Следствия:
    • Если ранг матрицы равен , то любые строк или столбцов этой матрицы будут линейно зависимы.
    • Если — квадратная матрица, и строки и столбцы этой матрицы линейно зависимы.
    • Пусть , тогда максимальное количество линейно независимых строк (столбцов) этой матрицы равно .
  • Теорема (об инвариантности ранга при элементарных преобразованиях): Введём обозначение для матриц, полученных друг из друга элементарными преобразованиями. Тогда справедливо утверждение: Если , то их ранги равны
  • Теорема Кронекера — Капелли: Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы. В частности:
    • Количество главных переменных системы равно рангу системы.
    • Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.

См. также

Ссылки