Робототехника

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Imaniac (обсуждение | вклад) в 18:24, 30 мая 2010 (Ссылки). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску
Рука робота

Робототе́хника (от робот и техника; англ. robotics) — прикладная наука, занимающаяся разработкой автоматизированных технических систем

Робототехника опирается на такие дисциплины как электроника, механика, программное обеспечение. Выделяют строительную, промышленную, бытовую, авиационную и экстремальную (военную, космическую, подводную) робототехнику.

Этимология

Слово «робототехника» было впервые использовано в печати Айзеком Азимовым в научно-фантастическом рассказе «Лжец», опубликованном в 1941 г.

«Робототехника» базируется на слове «робот», придуманном в 1920 г. научным фантастом и Нобелевским лауреатом Карлом Чапеком для своей пьесы Р. У.Р.. Однако, интерес к идеям, схожим с робототехникой, наблюдался еще до введения этого термина:

Компоненты роботов

Приводы

Пьезодвигатель
Нога робота, работающая на воздушных мышцах.

Приводы — это «мышцы» роботов. В настоящее время самыми популярными двигателями в приводах являются электрические, но применяются и другие, использующие химические вещества или сжатый воздух.

  • Двигатели постоянного тока: В настоящий момент большинство роботов используют электродвигатели, которые могут быть нескольких видов.
  • Шаговые электродвигатели: Как можно предположить из названия, шаговые электродвигатели не вращаются свободно, подобно двигателям постоянного тока. Они поворачиваются пошагово на определенный угол под управлением контроллера. Это позволяет обойтись без датчика положения, так как контроллеру точно известно, на сколько был сделан поворот. В связи с этим они часто используются в приводах многих роботов и станках с ЧПУ.
  • Пьезодвигатели: Современной альтернативой двигателям постоянного тока являются пьезодвигатели, также известные как ультразвуковые двигатели. Принцип их работы совершенно отличается: крошечные пьезоэлектрические ножки, вибрирующие с частотой более 1000 раз в секунду, заставляют мотор двигаться по окружности или прямой. Преимуществами подобных двигателей являются высокое нанометрическое разрешение, скорость и мощность, несоизмеримая с их размерами. Пьезодвигатели уже доступны на коммерческой основе и также применяются на некоторых роботах.
  • Воздушные мышцы: Воздушные мышцы — простое, но мощное устройство для обеспечения силы тяги. При накачивании сжатым воздухом, мышцы способны сокращаться до 40 % от своей длины. Причиной такого поведения является плетение, видимое с внешней стороны, которое заставляет мышцы быть или длинными и тонкими, или короткими и толстыми. Так как способ их работы схож с биологическими мышцами, их можно использовать для производства роботов с мышцами и скелетом, аналогичными мышцам и скелету животных.
  • Электроактивные полимеры: Электроактивные полимеры — это вид пластмасс, который изменяет форму в ответ на электрическую стимуляцию. Они могут быть сконструированы таким образом, что могут гнуться, растягиваться или сокращаться. Однако, в настоящее время нет ЭАП, пригодных для производства коммерческих роботов, так как все неэффективны или непрочны.
  • Эластичные нанотрубки: Это многообещающая экспериментальная технология, находящаяся на ранней стадии разработки. Отсутствие дефектов в нанотрубках позволяет этому волокну эластично деформироваться на несколько процентов. Человеческий бицепс может быть заменен проводом из такого материала диаметром 8 мм. Такие компактные «мышцы» могут помочь роботам в будущем обгонять и перепрыгивать человека.

Манипулирование

Двигательный аппарат

Колесные роботы

  • одноколесные;
  • двухколесные;
  • трехколесные;
    танковый тип;
    система рулевого управления;
  • четырехколесные;
  • многоколесные.

Шагающие роботы

  • использующие две ноги;
  • использующие четыре ноги;
  • использующие шесть ног;
  • многоногие.

По способу фиксации ноги выделяют:

  • с фиксацией ноги с использованием вакуумных присосок;
  • с фиксациями специальными устройствами или формой (волоски и щетинки у роботов подражающих насекомым);
  • без специального способа фиксации.

Отдельно можно выделить роботов-андроидов, подражающих движению человека.

Плавающие роботы

  • надводные роботы
  • подводные роботы

Летающие роботы

БПЛА

Другие способы движения

  • прыгающие роботы
  • роботы, подражающие движениям змеи
  • роботы, подражающие движениям червя

Взаимодействие с людьми

Различают одномодальные и многомодальные интерфейсы взаимодействия. При реализации взаимодействия современных роботов с человеком большое значение имеют технологии распознавания образов и речи.

Системы управления

По типу управления роботехнические системы подразделяются на:

  1. Биотехнические:
    • командные (кнопочное и рычажное управление отдельными звеньями робота);
    • копирующие (повтор движения человека, возможна реализация обратной связи, передающей прилагаемое усилие, экзоскелеты);
    • полуавтоматические (управление одним командным органом, например, рукояткой всей кинематической схемой робота);
  2. Автоматические:
    • программные (функционируют по заранее заданной программе, в основном предназначены для решения однообразных задач в неизменных условиях окружения);
    • адаптивные (решают типовые задачи, но адаптируются под условия функционирования);
    • интеллектуальные (наиболее развитые автоматические системы);
  3. Интерактивные:
    • автоматизированные (возможно чередование автоматических и биотехнических режимов);
    • супервизорные (автоматические системы, в которых человек выполняет только целеуказательные функции);
    • диалоговые (робот участвует в диалоге с человеком по выбору стратегии поведения, при этом как правило робот оснащается экспертной системой, способной прогнозировать результаты манипуляций и дающей советы по выбору цели).

В развитии методов управления роботами огромное значение имеет развитие технической кибернетики и теории автоматического управления.

Динамика и кинематика

Образование

Робототехнические комплексы также популярны в области образования как современные высокотехнологичные исследовательские инструменты в области теории автоматического управления и мехатроники. Их использование в различных учебных заведениях среднего и высшего профессионального образования позволяет реализовывать концепцию «обучение на проектах», положенную в основу такой крупной совместной образовательной программы США и Европейского союза, как ILERT. Применение возможностей робототехнических комплексов в инженерном образовании дает возможность одновременной отработки профессиональных навыков сразу по нескольким смежным дисциплинам: механика, теория управления, схемотехника, программирование, теория информации. Востребованность комплексных знаний способствует развитию связей между исследовательскими коллективами. Кроме того студенты уже в процессе профильной подготовки сталкиваются с необходимостью решать реальные практические задачи.

Существующие робототехнические комплексы для учебных лабораторий:

Источники


Российские интернет-проекты, посвященные робототехнике: [1] [2] [3] [4] [5] [6] [7]

См. также

Ссылки