Репортёрный ген

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Sirozha (обсуждение | вклад) в 05:15, 3 декабря 2010. Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Репортерные гены (гены-репортеры, англ. reporter gene) в молекулярной биологии — гены, которые присоединяют к регуляторным последовательностям других генов для исследования проявлений генов в культурах клеток. Некоторые репортерные гены используют так как их экспрессия придает организму четко выраженные легко измеряемые характеристики, некоторые, — так как они являются селективными маркерами. Репортерные гены используют для того, чтобы определить уровень экспрессии гена в клетке или в популяции. Часто в генно-инженерные конструкции встраивают в качестве репортера ген LacZ --Sirozha.ru 05:15, 3 декабря 2010 (UTC)

C-value paradox

The amount of DNA in the haploid cell of an organism is not related to it’s evolutionary complexity or number of genes. In eukaryotes,C-value is defined as the amount of DNA per genome(1C=haploid nucleus,2C=diploid nucleus and 4C=nucleus which is just about to divide by mitosis).There is enormous variation in the range of C values, from as little as a mere 106bp for a mycoplasma to as much as 1011bp for some plants and animals.

Common reporter genes

To introduce a reporter gene into an organism, scientists place the reporter gene and the gene of interest in the same DNA construct to be inserted into the cell or organism. For bacteria or eukaryotic cells in culture, this is usually in the form of a circular DNA molecule called a plasmid. It is important to use a reporter gene that is not natively expressed in the cell or organism under study, since the expression of the reporter is being used as a marker for successful uptake of the gene of interest.

Commonly used reporter genes that induce visually identifiable characteristics usually involve fluorescent and luminescent proteins; examples include the gene that encodes jellyfish green fluorescent protein (GFP), which causes cells that express it to glow green under blue light, the enzyme luciferase, which catalyzes a reaction with luciferin to produce light, and the red fluorescent protein from the gene dsRed. Another common reporter in bacteria is the Lac Z gene, which encodes the protein beta-galactosidase. This enzyme causes bacteria expressing the gene to appear blue when grown on a medium that contains the substrate analog X-gal. An example of a selectable-marker reporter in bacteria is the chloramphenicol acetyltransferase (CAT) gene, which confers resistance to the antibiotic chloramphenicol.

Transformation and transfection assays

Many methods of transfection and transformation — two ways of expressing a foreign or modified gene in an organism — are effective in only a small percentage of a population subjected to the techniques. Thus, a method for identifying those few successful gene uptake events is necessary. Reporter genes used in this way are normally expressed under their own promoter independent from that of the introduced gene of interest; the reporter gene can be expressed constitutively (that is, it is «always on») or inducibly with an external intervention such as the introduction of IPTG in the β-galactosidase system. As a result, the reporter gene’s expression is independent of the gene of interest’s expression, which is an advantage when the gene of interest is only expressed under certain specific conditions or in tissues that are difficult to access.

In the case of selectable-marker reporters such as CAT, the transfected population of bacteria can be grown on a substrate that contains chloramphenicol. Only those cells that have successfully taken up the construct containing the CAT gene will survive and multiply under these conditions.

Gene expression assays

Reporter genes can also be used to assay for the expression of the gene of interest, which may produce a protein that has little obvious or immediate effect on the cell culture or organism. In these cases the reporter is directly attached to the gene of interest to create a gene fusion. The two genes are under the same promoter elements and are transcribed into a single messenger RNA molecule. The mRNA is then translated into protein. In these cases it is important that both proteins be able to properly fold into their active conformations and interact with their substrates despite being fused. In building the DNA construct, a segment of DNA coding for a flexible polypeptide linker region is usually included so that the reporter and the gene product will only minimally interfere with one another.

Promoter assays

Reporter genes can be used to assay for the activity of a particular promoter in a cell or organism. In this case there is no separate «gene of interest»; the reporter gene is simply placed under the control of the target promoter and the reporter gene product’s activity is quantitatively measured. The results are normally reported relative to the activity under a «consensus» promoter known to induce strong gene expression.

Further uses

A more complex usage of reporter genes on a large scale is in two-hybrid screening, which aims to identify proteins that natively interact with one another in vivo.

Ссылки