Метод Якоби для собственных значений
В линейной алгебре метод Якоби для собственных значений — итерационный метод для вычисления собственных значений и собственных векторов вещественной симметричной матрицы. Он назван в честь Карла Густава Якоба Якоби, предложившего этот метод в 1846,[1] хотя использоваться метод начал только в 1950ых с появлением компьютеров.[2]
Описание алгоритма
Пусть A — симметричная матрица, а G = G(i,j,θ) — матрица вращения. Тогда
симметрична и подобна матрице A.
Более того, A′ содержит следующие компоненты:
где s = sin(θ) и c = cos(θ).
Поскольку G — ортогональная матрица, у матриц A и A′ равны фробениусовы нормы ||·||F (корни из сумм квадратов всех компонент), причём мы можем выбрать θ так, чтобы A′ij = 0, и в этом случае A′ будет иметь бóльшую сумму квадратов диагональных элементов:
Приравнивая это нулю, получим
Если , то
Чтобы достичь оптимального эффекта, необходимо потребовать, чтобы Aij был наибольшим по модулю внедиагональным элементом, т. н. опорным элементом.
Метод Якоби для собственных значений производит вращения до тех пор, пока матрица не станет почти диагональной. Тогда элементы на диагонали аппроксимируют собственные значения матрицы A.
Ссылки
- ↑ Jacobi, C.G.J. (1846). "Über ein leichtes Verfahren, die in der Theorie der Säkularstörungen vorkommenden Gleichungen numerisch aufzulösen". Crelle's Journal (нем.). 30: 51—94.
- ↑ Golub, G.H.; van der Vorst, H.A. (2000). "Eigenvalue computation in the 20th century". Journal of Computational and Applied Mathematics. 123 (1–2): 35—65. doi:10.1016/S0377-0427(00)00413-1.