Классическая механика
Класси́ческая меха́ника — вид механики (раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, это вызывающие), основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «Ньютоновской механикой».
Классическая механика подразделяется на:
- статику (которая рассматривает равновесие тел)
- кинематику (которая изучает геометрическое свойство движения без рассмотрения его причин)
- динамику (которая рассматривает движение тел).
Существует несколько эквивалентных способов формального математического описания классической механики:
Классическая механика даёт очень точные результаты в рамках повседневного опыта. Однако её применение ограничено телами, скорости которых много меньше скорости света, а размеры значительно превышают размеры атомов и молекул. Обобщением классической механики на тела, двигающиеся с произвольной скоростью, является релятивистская механика, а на тела, размеры которых сравнимы с атомными — квантовая механика. Квантовая теория поля рассматривает квантовые релятивистские эффекты.
Тем не менее, классическая механика сохраняет своё значение, поскольку:
- она намного проще в понимании и использовании, чем остальные теории
- в обширном диапазоне она достаточно хорошо описывает реальность.
Классическую механику можно использовать для описания движения таких объектов, как волчок и бейсбольный мяч, многих астрономических объектов (таких, как планеты и галактики), и иногда даже многих микроскопических объектов, таких как молекулы.
Классическая механика является самосогласованной теорией, то есть в её рамках не существует утверждений, противоречащих друг другу. Однако, её объединение с другими классическими теориями, например классической электродинамикой и термодинамикой приводит к появлению неразрешимых противоречий. В частности, классическая электродинамика предсказывает, что скорость света постоянна для всех наблюдателей, что несовместимо с классической механикой. В начале XX века это привело к необходимости создания специальной теории относительности. При рассмотрении совместно с термодинамикой, классическая механика приводит к парадоксу Гиббса, в котором невозможно точно определить величину энтропии, и к ультрафиолетовой катастрофе, в которой абсолютно чёрное тело должно излучать бесконечное количество энергии. Попытки разрешить эти проблемы привели к развитию квантовой механики.
Основные понятия
Классическая механика оперирует несколькими основными понятиями и моделями. Среди них следует выделить:
- Пространство. Считается, что движение тел происходит в пространстве, являющимся евклидовым, абсолютным (не зависит от наблюдателя), однородным (две любые точки пространства неотличимы) и изотропным (два любых направления в пространстве неотличимы).
- Время — фундаментальное понятие, не определяемое в классической механике. Считается, что время является абсолютным, однородным и изотропным (уравнения классической механики не зависят от направления течения времени)
- Система отсчёта состоит из тела отсчёта (некоего тела, реального или воображаемого, относительно которого рассматривается движение механической системы) и системы координат
- Материальная точка — объект, размерами которого в задаче можно пренебречь[1]. В действительности, любое тело, которое подчиняется законам классической механики, обязательно имеет ненулевой размер. Тела ненулевого размера могут испытывать сложные движения, поскольку может меняться их внутренняя конфигурация, например, тело может вращаться или деформироваться. Тем не менее, в определённых случаях к подобным телам применимы результаты, полученные для материальных точек, если рассматривать такие тела, как совокупности большого количества взаимодействующих материальных точек. Материальные точки характеризуются несколькими параметрами:
- Масса — мера инертности тел
- Радиус-вектор — вектор, проведённый из начала координат в точку расположения тела, характеризует положение тела в пространстве[1]
- Скорость является характеристикой темпа изменения положения тела со временем, определяется как производная радиус-вектора по времени[1]
- Ускорение — скорость (темп) изменения скорости, определяется как производная скорости по времени[1]
- Импульс (устаревшее название — количество движения) — векторная физическая величина, равная произведению массы материальной точки на её скорость[2]
- Кинетическая энергия — энергия движения материальной точки, определяемая как половина произведения массы тела на квадрат его скорости[3]
- Сила — Мера взаимодействия тел, в результате которого возникает ускорение.
- Если работа силы не зависит от вида траектории, по которой двигалось тело, а определяется только его начальным и конечным положениями, то такая сила называется потенциальной. Взаимодействие, происходящее посредством потенциальных сил, может описываться потенциальной энергией. По определению, потенциальной энергией называется функция координат тела такая, что сила, действующая на тело равна градиенту от этой функции, взятой с обратным знаком:
- Если работа силы не зависит от вида траектории, по которой двигалось тело, а определяется только его начальным и конечным положениями, то такая сила называется потенциальной. Взаимодействие, происходящее посредством потенциальных сил, может описываться потенциальной энергией. По определению, потенциальной энергией называется функция координат тела такая, что сила, действующая на тело равна градиенту от этой функции, взятой с обратным знаком:
Основные законы
Принцип относительности Галилея
Основным принципом, на котором базируется классическая механика является принцип относительности, сформулированный на основе эмпирических наблюдений Г. Галилеем. Согласно этому принципу существует бесконечно много систем отсчёта, в которых свободное тело покоится или движется с постоянной по модулю и направлению скоростью. Эти системы отсчёта называются инерциальными и движутся друг относительно друга равномерно и прямолинейно. Во всех инерциальных системах отсчёта свойства пространства и времени одинаковы, и все процессы в механических системах подчиняются одинаковым законам. Этот принцип можно также сформулировать как отсутствие абсолютных систем отсчёта, то есть систем отсчёта, каким-либо образом выделенных относительно других[4].
Законы Ньютона
Основой классической механики являются три закона Ньютона.
Первый закон устанавливает наличие свойства инертности у материальных тел и постулирует наличие таких систем отсчёта, в которых движение свободного тела происходит с постоянной скоростью (такие системы отсчёта называются инерциальными).
Второй закон Ньютона вводит понятие силы как меры взаимодействия тела и на основе эмпирических фактов постулирует связь между величиной силы, ускорением тела и его инертностью (характеризуемой массой). В математической формулировке второй закон Ньютона чаще всего записывается в следующем виде:
где — результирующий вектор сил, действующих на тело; — вектор ускорения тела; m — масса тела.
Второй закон Ньютона может быть также записан в терминах изменения импульса тела :
В такой форме закон справедлив и для тел с переменной массой, а также в релятивистской механике.
Второго закона Ньютона недостаточно для описания движения частицы. Дополнительно требуется описание силы , полученное из рассмотрения сущности физического взаимодействия, в котором участвует тело.
Третий закон Ньютона уточняет некоторые свойства введёного во втором законе понятия силы. Им постулируется наличие для каждой силы, действующей на первое тело со стороны второго, равной по величине и противоположной по направлению силы, действующей на второе тело со стороны первого. Наличие третьего закона Ньютона обеспечивает выполнение закона сохранения импульса для системы тел.
Закон сохранения импульса
Закон сохранения импульса является следствием законов Ньютона для замкнутых систем, то есть систем, на которые не действуют внешние силы. С более фундаментальной точки зрения закон сохранения импульса является следствием однородности пространства[2].
Закон сохранения энергии
Закон сохранения энергии является следствием законов Ньютона для замкнутых консервативных систем, то есть систем, в которых действует только консервативные силы. С более фундаментальной точки зрения закон сохранения энергии является следствием однородности времени[3].
История
Древнее время
Классическая механика зародилась в древности главным образом в связи с проблемами, которые возникали при строительстве. Первым из разделов механики, получившим развитие стала статика, основы которой были заложены в работах Архимеда в III веке до н. э. Им были сформулированы правило рычага, теорема о сложении параллельных сил, введено понятие центра тяжести, заложены основы гидростатики (сила Архимеда).
Новое время
XVII век
Динамика как раздел классической механики начал развиваться только в XVII веке. Его основы были заложены Галилео Галилеем, который первым правильно решил задачу о движении тела под действием заданной силы. На основе эмпирических наблюдений им были открыты закон инерции и принцип относительности. Помимо этого Галилеем внесён вклад в зарождение теории колебаний и науки о сопротивлении материалов.
Христиан Гюйгенс проводил исследования в области теории колебаний, в частности изучал движение точки по окружности, а также колебания физического маятника. В его работах были также впервые сформулированы законы упругого удара тел.
Заложение основ классической механики завершилось работами Исаака Ньютона, сформулировавшего в наиболее общей форме законы механики и открывшего закон всемирного тяготения. Им же в 1684 году был установлен закон вязкого трения в жидкостях и газах.
Так же в XVII веке в 1660 году был сформулирован закон упругих деформаций, носящий имя своего первооткрывателя Роберта Гука.
XVIII век
В XVIII веке зарождается и интенсивно развивается аналитическая механика. Её методы для задачи о движении материальной точки были разработаны Леонардом Эйлером, которые заложил основы динамики твёрдого тела. Эти методы основываются на принципе виртуальных перемещений и на принципе Д’Аламбера. Разработку аналитических методов завершил Лагранж, которому удалось сформулировать уравнения динамики механической системы в наиболее общем виде: с использованием обобщённых координат и импульсов. Помимо этого, Лагранж принял участие в заложении основ современной теории колебаний.
Альтернативный метод аналитической формулировки классической механики основывается на принципе наименьшего действия, который впервые был высказан Мопертюи по отношению к одной материальной точке и обобщён на случай системы материальных точек Лагранжем.
Так же в XVIII веке в работах Эйлера, Даниила Бернулли, Лагранжа и Д’Аламбера были разработаны основы теоретического описания гидродинамики идеальной жидкости.
XIX век
В XIX веке развитие аналитической механики происходит в работах Остроградского, Гамильтона, Якоби, Герца и др. В теории колебаний Раусом, Жуковским и Ляпуновым была разработана теория устойчивости механических систем. Кориолис разработал теорию относительного движения, доказав теорему о разложении ускорения на составляющие. Во второй половине XIX века происходит выделение кинематики в отдельный раздел механики.
Особенно значительны в XIX веке были успехи в области механики сплошной среды. Навье и Коши в общей форме сформулировали уравнения теории упругости. В работах Навье и Стокса были получены дифференциальные уравнения гидродинамики с учётом вязкости жидкости. Наряду с этим происходит углубление знаний в области гидродинамики идеальной жидкости: появляются работы Гельмгольца о вихрях, Кирхгофа, Жуковского и Рейнольдса о турбулентности, Прандтля о пограничных эффектах. Сен-Венан разработал математическую модель, описывающую пластические свойства металлов.
Новейшее время
В XX веке интерес исследователей переключается на нелинейные эффекты в области классической механики. Ляпунов и Анри Пуанкаре заложили основы теории нелинейных колебаний. Мещерский и Циолковский провели анализ динамики тел переменной массы. Из механики сплошной среды выделяется аэродинамика, основы которой разработаны Жуковским. В середине XX века активно развивается новое направление в классической механике — теория хаоса. Важными также остаются вопросы устойчивости сложных динамических систем.
См. также
Примечания
Литература
- Б. М. Яворский, А. А. Детлаф. Физика для школьников старших классов и поступающих в вузы. — М.: Академия, 2008. — 720 с. — (Высшее образование). — 34 000 экз. — ISBN 5-7695-1040-4.
- Сивухин Д. В. Общий курс физики. — Издание 5-е, стереотипное. — М.: Физматлит, 2006. — Т. I. Механика. — 560 с. — ISBN 5-9221-0715-1.
- А. Н. Матвеев. Механика и теория относительности. — 3-е изд.. — М.: ОНИКС 21 век: Мир и Образование, 2003. — 432 с. — 5000 экз. — ISBN 5-329-00742-9.
- Ч. Киттель, У. Найт, М. Рудерман. Механика. Берклеевский курс физики.. — М.: Лань, 2005. — 480 с. — (Учебники для вузов). — 2000 экз. — ISBN 5-8114-0644-4.
- Шаблон:Книга:Ландау Л.Д., Лифшиц Е.М.: Механика
- Г. Голдстейн. Классическая механика. — 1975. — 413 с.
- С. M. Тарг. Механика — статья из Физической энциклопедии