Инсулин

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Роман Беккер (обсуждение | вклад) в 22:47, 2 сентября 2005. Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Шаблон:Processing

Файл:Картинка
Структура молекулы инсулина

Инсули́н (от лат. insula — островок) — гормон пептидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы. Оказывает многогранное влияние на обмен веществ практически во всех тканях. Основное действие инсулина заключается в снижении концентрации глюкозы в крови.

Инсулин увеличивает проницаемость плазматических мембран для глюкозы, активирует ключевые ферменты гликолиза, стимулирует образование в печени и мышцах из глюкозы гликогена, усиливает синтез жиров и белков. Кроме того, инсулин подавляет активность ферментов, расщепляющих гликоген и жиры. То есть, помимо анаболического действия, инсулин обладает также и антикатаболическим эффектом.

Нарушение секреции инсулина вследствие деструкции бета-клеток — абсолютная недостаточность инсулина — является ключевым звеном патогенеза сахарного диабета 1-го типа. Нарушение действия инсулина на ткани — относительная инсулиновая недостаточность — имеет важное место в развитии сахарного диабета 2-го типа.

Строение

Эмпирическая формула инсулина: C254H377N65O75S6.

Молекула инсулина образована двумя полипептидными цепями, содержащими 51 аминокислотный остаток: A-цепь состоит из 21 аминокислотного остатка, B-цепь образована 30 аминокислотными остатками. Полипептидные цепи соединяются двумя дисульфидными мостиками через остатки цистеина, третья дисульфидная связь расположена в A-цепи.

Первичная структура инсулина у разных биологических видов несколько различается, как различается и его важность в регуляции обмена углеводов. Наиболее близким к человеческому является инсулин свиньи, который различается с ним всего одним аминокислотным остатком: в 30 положении B-цепи свиного инсулина расположен аланин, а в инсулине человека – треонин; бычий инсулин отличается двумя аминокислотными остатками.

Инсулины многих видов животных проявляют характерную инсулиновую биологическую активность и у человека, что и позволило применять инсулин свиней и инсулин крупного рогатого скота в качестве фармакологических препаратов инсулина. В настоящее время применение в медицине немодифицированных инсулинов животных постепенно сокращается, уступая место полусинтетическому модифицированному («гуманизированному» — с заменой аланина на треонин в 30 положении B-цепи) свиному инсулину и синтетическому генноинженерному инсулину человека.

Открытие и изучение

Образование и секреция

Главным стимулом к синтезу и выделению инсулина служит повышение концентрации глюкозы в крови.

Синтез инсулина в клетке

Синтез и выделение инсулина представляют собой сложный процесс, включающий несколько этапов. Первоначально образуется неактивный предшевственник гормона, который после ряда химических превращений в процессе созревания превращается в активную форму.

Ген, кодирующий первичную структуру предшественника инсулина, локализуется в коротком плече 11 хромосомы.

На рибосомах шероховатой эндоплазматической сети синтезируется пептид-предшественник – т.н. препроинсулин. Он представляет собой белковую полипептидную цепь, постоенную из 110 аминокислотных остатков и включает в себя расположенные последовательно: L-пептид, B-пептид, C-пептид и A-пептид.

Почти сразу после синтеза в ЭПР от этой молекулы отщепляется сигнальный (L) пептид – последовательность из 24 аминокислот, которые необходимы для прохождения синтезируемой молекулы через гидрофобную липидную мембрану ЭПР. Образуется проинсулин, который транспортируется в Комплекс Гольджи, далее в цистернах которого происходит так называемое созревание инсулина.

Созревание является наиболее длительным этапом образования инсулина. В процессе созревания из молекулы проинсулина с помощью специфических эндопептидаз вырезается C-пептид – фрагмент из 31 аминокислоты, соединяющий B-цепь и A-цепь. То есть молекула проинсулина разделяется на инсулин и биологически инернтый пептидный остаток.

В секреторных гранулах инсулин, соединяясь с катионами цинка, образует кристаллические гексамерные агрегаты.

Секреция инсулина

Выделение инсулина из клетки происходит путём экзоцитоза – зрелая секреторная гранула приближается к плазматической мембране и сливается с ней, и содержимое гранулы выдавливается из клетки. Изменение физических свойств среды приводит к отщеплению цинка и распаду кристаллического неактивного инсулина на отдельные молекулы, которые и обладают биологической активностью.

Бета-клетки островков Лангерганса чувствительны к изменению уровня глюкозы в крови; выделение ими инсулина в ответ на повышение концентрации глюкозы реализуется по следующиму механизму:

  • Глюкоза свободно транспортируется в бета-клетки специальным белком-переносчиком GluT 2
  • В клетке глюкоза подвергается гликолизу и далее оксляется в дыхательном цикле с образованием АТФ; интенсивность синтеза АТФ зависит от уровня глюкозы в крови.
  • АТФ регулирует закрытие ионных калиевых каналов, приводя к деполяризациии мембраны.
  • Деполяризация вызывает открытие потенциал-зависимых кальциевых каналов, это приводит к току кальция в клетку.
  • Повышение уровня кальция в клетке активирует фосфолипазу C, которая расщепляет один из мембранных фосфолипидов – фосфатидлилинозитол-4,5-бифосфат – на инозитол-1,4,5-трифосфат и диацилглицерат.
  • Инозитолбифосфат связывается с рецепторными белками ЭПР. Это в приводит к высвобождению связанного внутриклеточного кальция и резкому повышению его концентрации.
  • Значительное увеличение концентрации в клетке ионов кальция приводит к высвобождению заранее синтезированного инсулина, хранящегося в секреторных гранулах.

Регуляция образования и секреции инсулина

Главным стимулятором освобождения инсулина является повышение уровня глюкозы в крови. Дополнительно образование инсулина и его выделение стимулируется во время приёма пищи, причём не только глюкозы или углеводов. Секрецию инсулина усиливают аминокислоты, особенно лейцин и аргинин, некоторые гормоны энтериновой системы: холецистокинин, Глюкозозависимый инсулинотропный пептид (ГИП) а также такие гормоны как АКТГ, СТГ, эстрогены и др., препараты сульфонилмочевины.

Бета-клетки также находятся под влиянием автономной нервной системы.

  • Парасимпатическая нервная система (холинергические окончания блуждающего нерва) стимулирует выделение инсулина
  • Симпатическая нервная система (активация A2-адренорецепторов) подавляет выделение инсулина.

Причём синтез инсулина заново стимулируется глюкозой и холинергическими нервными сигналами.

Механизм действия

См. также