Проблемы Гильберта

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая 213.221.39.153 (обсуждение) в 12:12, 23 апреля 2007 (Список проблем: орфография). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Проблемы Гильберта — список из 23 кардинальных проблем математики, представленный Давидом Гильбертом на II Международном Конгрессе математиков в Париже в 1900 году. Тогда эти проблемы (охватывающие основания математики, алгебру, теорию чисел, геометрию, топологию, алгебраическую геометрию, группы Ли, вещественный и комплексный анализ, дифференциальные уравнения, математическую физику и теорию вероятностей, а также вариационное исчисление) не были решены. На данный момент решены 16 проблем из 23. Ещё 2 не являются корректными математическими проблемами (одна сформулирована слишком расплывчато, чтобы понять, решена она или нет, другая, далёкая от решения, — физическая, а не математическая). Из оставшихся 5 проблем три не решены, а две решены только для некоторых случаев.

Список проблем

1 нет консенсуса1 Проблема Кантора о мощности континуума (Континуум-гипотеза)
2 нет консенсуса9 Непротиворечивость аксиом арифметики.
3 решена Равносоставность равновеликих многогранников
4 слишком расплывчатая2 Перечислить метрики, в которых прямые являются геодезическими
5 решена Все ли непрерывные группы являются группами Ли?
6 не математическая Математическое изложение аксиом физики
7 решена Если a ≠ 0, 1 — алгебраическое число, и b — алгебраическое, но иррациональное, верно ли, что abтрансцендентное число
8 открыта4 Проблема простых чисел (гипотеза Римана и проблема Гольдбаха)
9 частично решена5 Доказательство наиболее общего закона взаимности в любом числовом поле
10 решена8 Задача о разрешимости диофантовых уравнений
11 решена Исследование квадратичных форм с произвольными алгебраическими числовыми коэффициентами
12 открыта Распространение теоремы Кронекера об абелевых полях на произвольную алгебраическую область рациональности
13 решена Невозможность решения общего уравнения седьмой степени с помощью функций, зависящих только от двух переменных
14 решена Доказательство конечной порождённости алгебры инвариантов алгебраической группы6
15 решена Строгое обоснование исчислительной геометрии Шуберта
16 частично решена7 Число и расположение овалов вещественной алгебраической кривой данной степени на плоскости; число и расположение предельных циклов полиномиального векторного поля данной степени на плоскости
17 решена Представление определённых форм в виде суммы квадратов
18 частично решена3 Нерегулярные заполнения пространства конгруэнтными многогранниками. Наиболее плотная упаковка шаров
19 решена Всегда ли решения регулярной вариационной задачи Лагранжа являются аналитическими?
20 решена Общая задача о граничных условиях (?)
21 решена Доказательство существования линейных дифференциальных уравнений с заданной группой монодромии
22 решена Униформизация аналитических зависимостей с помощью автоморфных функций
23 решена Развитие методов вариационного исчисления

Сноски

  1. Результат Коэна (Cohen) показывает, что ни континуум-гипотеза, ни её отрицание не противоречит системе аксиом Цермело — Френкеля (стандартной системе аксиом теории множеств). Таким образом, континуум-гипотезу в этой системе аксиом невозможно ни доказать, ни опровергнуть. Ведутся споры о том, является ли результат Коэна полным решением задачи.
  2. Согласно Рову (Rowe) и Грею (Gray) (см. далее), большинство проблем были решены. Некоторые из них не были достаточно точно сформулированы, однако достигнутые результаты позволяют рассматривать их как «решённые». Ров и Грей говорят о четвёртой проблеме как о такой, которая слишком нечётко поставлена, чтобы судить о том, решена она или нет.
  3. Ров и Грей также называют проблему № 18 «открытой» в своей книге за 2000 год, потому что задача упаковки шаров (известная также как задача Кеплера) не была решена к тому времени, однако на сегодняшний день есть сведения о том, что она уже решена (см. далее). Продвижения в решении проблемы № 16 были сделаны в недавнее время, а также в 1990-х.
  4. Проблема № 8 содержит две известные проблемы, обе из которых остаются нерешёнными. Первая из них, гипотеза Римана, является одной из семи Проблем тысячелетия, которые были обозначены как «Проблемы Гильберта» 21-го века.
  5. Проблема № 9 была решена для абелевого случая; неабелев случай остаётся нерешённым.
  6. Утверждение о конечной порождённости алгебры инвариантов доказано для редуктивных групп. Нагата в 1958 году построил пример унипотентной группы, у которой алгебра инвариантов не является конечно порождённой. В.Л. Попов доказал, что если алгебра инвариантов любого действия алгебраической группы G на аффинном алгебраическом многообразии конечно порождена, то группа G редуктивна.
  7. Первая (алгебраическая) часть проблемы № 16 более точно формулируется так. Харнаком доказано, что максимальное число овалов равно M=(n-1)(n-2)/2+1, и что такие кривые существуют — их называют M-кривыми. Как могут быть расположены овалы M-кривой? Эта задача сделана до степени n=6 включительно, а для степени n=8 довольно много известно (хотя её ещё не добили). Кроме того, есть общие утверждения, ограничивающие то, как овалы M-кривых могут быть расположены — см. работы Гудкова, Арнольда, Роона, самого Гильберта (впрочем, стоит учитывать, что в доказательстве Гильберта для n=6 есть ошибка: один из случаев, считаемый им невозможным, оказался возможным и был построен Гудковым). Вторая (дифференциальная) часть остаётся открытой даже для квадратичных векторных полей — неизвестно даже, сколько даже их может быть, и даже что оценка сверху существует. Даже индивидуальная теорема конечности (то, что у каждого полиномиального векторного поля предельных циклов конечное число) была доказана только недавно. Она считалась доказанной Дюлаком, но в его доказательстве была обнаружена ошибка, и окончательно эта теорема была доказана Ильяшенко и Экалем — для чего каждому из них пришлось написать по книге.
  8. Юрий Матиясевич в 1970 году доказал алгоритмическую неразрешимость задачи о построении универсального алгоритма, определяющего, является ли произвольное диофантово уравнение разрешимым.
  9. Курт Гёдель доказал что непротиворечивость аксиом арифметики нельзя доказать исходя из самих аксиом арифметики.

24-я проблема

Изначально список содержал 24 проблемы, но в процессе подготовки к докладу Гильберт отказался от одной из них. Эта 24-я проблема была связана с теорией доказательств критерия простоты и общих методов. Данная проблема была обнаружена благодаря Rüdiger Thiele.

См. также

Литература