Ферритовый вентиль
На эту статью не ссылаются другие статьи Википедии. |
Ферри́товый ве́нтиль (феррит + нем. ventil клапан) — устройство с односторонним прохождением волны, т. е. с очень малым затуханием волны, проходящей в одном направлении и очень большим — для волны обратного направления.
Общие сведения
Вентили применяют для поглощения отраженных волн в линии передачи, улучшая тем самым согласование различных элементов цепи. Их эффективность определяется вентильным отношением В, т. е. отношением ослаблений обратной и прямой волн, выраженным в децибелах:
- B = αобр / αпр
- где α – коэффициенты затухания обратной и прямой волны.
Принцип действия вентилей основан на том, что намагниченная ферритовая пластина является невзаимной средой. То есть при прямом прохождении волны вектор ее поляризации поворачивается из положения А в положение А΄, а при обратном прохождении, он не возвращается в исходное положение А
Наиболее широко применяются вентили трех типов: резонансные, со смещением поля и фарадеевские.
Резонансные вентили
В резонансных вентилях используется то, что поглощение мощности при ферромагнитном резонансе имеет место в переменном магнитном поле с круговой поляризацией и правым направлением вращения относительно направления постоянной намагниченности M0 (то есть с направлением вращения головки правого винта при поступательном движении винта в направлении M0). В прямоугольном волноводе с ферритовой пластиной при некотором (близком к четверти ширины волновода) положении пластины переменное магнитное поле в пластине имеет круговую поляризацию с разными направлениями вращения поляризации для различных направлений распространения. Поэтому потери энергии при резонансе оказываются малыми для одного направления распространения и большими для другого.
Вентили со смещением поля
Вентили со смещением поля используют то, что распределения переменного электрического поля в волноводе с намагниченной ферритовой пластиной различаются для разных направлений распространения. И может быть найдено положение пластины, для которого электрическое поле на ее поверхности равно нулю для одного из направлений распространения. На эту поверхность помещается поглотитель, например тонкая пленка металла.
Фарадеевские вентили
Фарадеевский вентиль состоит из отрезка круглого волновода с ферритовым стержнем, расположенным по оси, и внешнего соленоида, создающего продольное поле подмагничиваиия. С обеих сторон круглый волновод оканчивается плавными переходами к прямоугольным волноводам. Внутри переходов параллельно широким стенкам входного и выходного прямоугольных волноводов установлены поглощающие пластины. Выходной прямоугольный волновод повернут по отношению к входному на угол 45°. Волна, поданная на вход 1, не испытывая ослабления в поглощающей пластине, преобразуется в волну H11 круглого волновода с вертикальной поляризацией. Диаметр и длина ферритового стержня и напряженность подмагничивающего поля выбраны так, что плоскость поляризации волны при распространении по отрезку круглого волновода с ферритом поворачивается по часовой стрелке на угол 45°, и волна без потерь проходит через переход с поглощающей пластиной в выходной прямоугольный волновод, узкие стенки которого оказываются параллельными вектору E. Для уменьшения отражений концы ферритового стержня и поглощающих пластин имеют скосы. Волна, поступающая на вход 2, без ослабления преобразуется в волну H11 круглого волновода. При распространении на участке с ферритовым стержнем плоскость поляризации волны поворачивается по часовой стрелке на 45° (направление поворота плоскости поляризации при эффекте Фарадея не зависит от направления распространения волны и определяется только направлением поля подмагничиваиия). На выходе участка с ферритом вектор E оказывается параллельным широким стенкам прямоугольного волновода входа 1 и поглощающей пластине. На вход 1 волна не проходит, и вся переносимая ею мощность рассеивается в поглощающей пластине. Такой вентиль может рассматриваться как частный случай фарадеевского циркулятора.
Некоторые примеры
- ММВ 3-4 — 3,5…4,1 МГц
- ММВ 9-1 — 8,5…9,8 МГц
- ММВ 16-2 — 14,5…16,5 МГц
- ИВ 15 — 145…174 МГц, 300…360 МГц, 400…470 МГц
- ИВ 50 — 145…174 МГц, 300…360 МГц, 400…470 МГц
- ФВП1-6 — 50…200 МГц
- ФВП2-8 — 150…900 МГц
Основные нормируемые характеристики
- Рабочий диапазон частот
- Рабочая полоса частот
- Прямые потери
- Обратные потери (развязка)
- Волновое сопротивление (для коаксиальных вентилей)
- Допустимый КСВ
- Допустимая входная мощность
Литература и документация
Литература
- Сазонов Д.М., Гридин А.М., Мишустин Б.А. Устройства СВЧ — М: Высш. школа, 1981
- Чернушенко А. М. Конструирование экранов и СВЧ-устройств — М: Радио и связь, 1990
- Вамберский М. В. и др. Передающие устройства СВЧ
- Вольман В. И., Пименов Ю. В. Техническая электродинамика — М.: Связь, 1971
Нормативно-техническая документация
- ГОСТ Р 50730.1...5 Приборы ферритовые СВЧ
- ОСТ11-480.005.1...8 Приборы ферритовые СВЧ
- ТУ 11-ПЯ0.707.434ТУ-86 Детали ферритовые СВЧ-диапазона
Ссылки
- Особенности национальных АФУ
- ПЕРСПЕКТИВНОЕ ДВУХДИАПАЗОННОЕ АНТЕННО-ФИДЕРНОЕ УСТРОЙСТВО ДЛЯ РАДИОЦЕНТРА ПОДВИЖНОЙ УКВ РАДИОСВЯЗИ
- Магнетизм на сверхвысоких частотах