Квантовая электроника

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Rubinbot (обсуждение | вклад) в 20:33, 4 апреля 2012 (r2.5.4) (робот изменил: en:Quantum optics#Quantum electronics). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Квантовая электроника — область физики, изучающая методы усиления и генерации электромагнитного излучения на основе явления вынужденного излучения в неравновесных квантовых системах, а также свойств получаемых таким образом усилителей и генераторов и их применения.

Физические основы квантовой электроники

В классической электронике генерация электромагнитного излучения осуществляется за счет кинетической энергии свободных электронов, согласованно движущихся в колебательном контуре. В квантовой электронике энергия излучения берется из внутренней энергии квантовых систем (атомов, молекул, ионов), высвобождаемой при излучательных переходах между ее уровнями энергии. Излучательные переходы бывают трех видов — спонтанное излучение, вынужденное излучение и поглощение. При спонтанном излучении возбужденная система самопроизвольно, без внешних воздействий испускает фотон, характеристики которого (частота, поляризация, направление распространения) никоим образом не связаны с характеристиками фотонов, испускаемых другими частицами. Принципиально иная ситуация наблюдается при вынужденном испускании фотона под воздействием внешнего излучения той же частоты. При этом образуется фотон с точно теми же свойствами, что и у фотонов, вызвавших его появление, то есть формируется когерентное излучение. Наконец, имеет место процесс поглощения фотонов из внешнего излучения, противоположный вынужденному испусканию.

Обычно поглощение преобладает над вынужденным излучением. Если бы можно было добиться обратной ситуации, в веществе произошло бы усиление исходной внешней (вынуждающей) волны. Рассмотрим переходы между уровнями энергии и , характеризуемые частотой , так что ( — постоянная Планка). Вероятности переходов определяются через т. наз. коэффициенты Эйнштейна и :

  • для спонтанных переходов ,
  • для поглощения ,
  • для вынужденного излучения ( — спектральная объемная плотность энергии).

При этом , (уровни считаются невырожденными). Изменение плотности энергии электромагнитной волны равна разности испускаемой и поглощаемой в вынужденных процессах энергии и пропорциональна разности населенностей уровней:

.

В состоянии термодинамического равновесия населенности подчиняются распределению Больцмана, так что

,

поэтому энергия поглощается системой и волна ослабляется. Чтобы волна усиливалась, необходимо, чтобы выполнялось условие , то есть система оказалась в неравновесном состоянии. Такую ситуацию, когда населенность верхнего уровня больше, чем нижнего, называют инверсией населенностей, или системой с отрицательной температурой. Это состояние системы характеризуется отрицательным значением коэффициента поглощения, то есть происходит усиление электромагнитной волны.

Создать инверсию населенностей можно лишь затратив энергию — так называемую энергию накачки. Среда с инверсией населенностей называется активной. Таким образом, в активной среде можно получить когерентное усиление излучения. Чтобы превратить усилитель в генератор, необходимо поместить среду в систему положительной обратной связи, возвращающей часть излучения назад в среду. Для создания обратной связи используются объемные и открытые резонаторы. Наконец, для создания устойчивой генерации необходимо превышение энергии вынужденного излучения над потерями энергии (рассеяние, нагрев среды, полезное излучение), что приводит к требованию превышения мощности накачки определенного порогового значения.

Надо отметить, что феменологическая теория Эйнштейна была построена для случая, когда излучатель находится в свободном пространстве и который излучает в бесконечное число мод пространства. При размещении излучателя в пространство с ограниченным числом мод коэффициенты Эйнштейна меняются, см. статью о Пёрселл-факторе

Из истории квантовой электроники

Предпосылки

Представление о вынужденном излучении было введено А. Эйнштейном в 1917 году на основе термодинамических соображений и было использовано для получения формулы Планка. В 1940 году В. А. Фабрикант предложил использовать вынужденное испускание для усиления света, однако в то время эта идея не была оценена. Важным непосредственным предшественником квантовой электроники стала радиоспектроскопия, давшая многие экспериментальные методы для работы с молекулярными и атомными пучками (И. Раби, 1937) и поставившая задачу создания квантовых стандартов частоты и времени. Следует отметить также ставшее важным этапом открытие в 1944 году Е. К. Завойским электронного парамагнитного резонанса.

Мазеры

Датой рождения квантовой электроники можно считать 1954 году, когда Н. Г. Басов и А. М. Прохоров в СССР и независимо Дж. Гордон (J. Gordon), Х. Цайгер (H. Zeiger) и Ч. Таунс (C. H. Townes) в США создали первый квантовый генератор (мазер) на молекулах аммиака. Генерация в нем осуществляется на длине волны 1,25 см, соответствующей переходам между состояниями молекул с зеркально симметричной структурой. Инверсия населенностей достигается за счет пространственного разделения возбужденных и невозбужденных молекул в сильно неоднородном электрическом поле (см. эффект Штарка). Отсортированный молекулярный пучок пропускается через объемный резонатор, служащий для осуществления обратной связи. Впоследствии были созданы и другие молекулярные генераторы, например мазер на пучке молекул водорода. Современные мазеры позволяют достигать стабильности частоты , что позволяет создавать сверхточные часы.

Следующим важным шагом в развитии квантовой электроники стал предложенный в 1955 году Н. Г. Басовым и А. М. Прохоровым метод трех уровней, позволивший существенно упростить достижение инверсии и использовать для этой цели оптическую накачку. На этой основе в 19571958 годах Г. Э. Д. Сковилом (H. E. D. Scovil) и другими были созданы квантовые усилители на парамагнитных кристаллах (например, на рубине), работавшие в радиодиапазоне.

Лазеры

Для продвижения квантовых генераторов в область оптических частот важной оказалась идея А. М. Прохорова об использовании открытых резонаторов (системы параллельных зеркал, как в резонаторе Фабри-Перо), крайне удобных для осуществления накачки. Первый лазер на кристалле рубина, дававший излучение на длине волны 0,6934 мкм, был создан Т. Мейманом (Th. Maiman) в 1960 году. Оптическая накачка в нем реализуется при помощи импульсных газоразрядных ламп. Рубиновый лазер был первым твердотельным, также выделяются лазеры на неодимовом стекле и на кристаллах граната с неодимом (длина волны 1,06 мкм). Твердотельные лазеры позволили получить генерацию мощных коротких ( с) и сверхкоротких ( с) импульсов света в схемах модуляции добротности и синхронизации мод резонатора.

Вскоре А. Джаван (A. Javan) создал первый газовый лазер на смеси атомов гелия и неона (длина волны 0,6328). Накачка в нем осуществляется электронным ударом в газовом разряде и резонансной передачей энергии от вспомогательного газа (в данном случае — гелия) основному (неону). Среди других типов газовых лазеров выделяются мощные лазеры на углекислом газе (длина волны 10,6 мкм, вспомогательные газы — азот и гелий), аргоновые лазеры (0,4880 и 0,5145 мкм), кадмиевый лазер (0,4416 и 0,3250 мкм), лазер на парах меди, эксимерные лазеры (накачка за счет распада молекул в основном состоянии), химические лазеры (накачка за счет химических реакций, например, цепной реакции соединения фтора с водородом).

В 1958 году Н. Г. Басов, Б. М. Вул и Ю. М. Попов заложили основы теории полупроводниковых лазеров, а уже в 1962 году был создан первый инжекционный лазер [Р. Холл (R. N. Hall), У. Думке (W. L. Dumke) и др.] Интерес к ним обусловлен простотой в изготовлении, высоким КПД и возможностью плавной перестройки частоты в широком диапазоне (длина волны излучения определяется шириной запрещенной зоны). Существенным результатом является также создание в 1968 году лазеров на полупроводниковых гетероструктурах.

В конце 1960-х были разработаны и созданы лазеры на молекулах органических красителей, обладающие чрезвычайно широкой полосой усиления, что позволяет плавно перестраивать частоту генерации при использовании дисперсионных элементов (призмы, дифракционная решетка). Набор из нескольких красителей позволяет охватить весь оптический диапазон.

Применения квантовой электроники

Литература

Общие сведения и научно-популярная литература

  • Квантовая электроника: Маленькая энциклопедия. — М.: СЭ, 1969.
  • А. Пекара. Новый облик оптики. — М.: Советское радио, 1973.
  • Н. В. Карлов. Квантовая электроника. // Физика микромира: Маленькая энциклопедия. — М.: СЭ, 1980. — С. 200—217.
  • М. Е. Жаботинский. Квантовая электроника. // Физическая энциклопедия. — Т. 2 — М.: СЭ, 1990. — С. 319—320.

Монографии

  • Н. В. Карлов, А. А. Маненков. Квантовые усилители. — М.: 1966.
  • Н. Бломберген. Нелинейная оптика. — М.: 1966.
  • В. В. Григорьянц, М. Е. Жаботинский, В. Ф. Золин. Квантовые стандарты частоты. — М.: 1968
  • Р. Пантел, Г. Путхоф. Основы квантовой электроники. — М.: Мир, 1972.
  • Ф. Цернике, Дж. Мидвинтер. Прикладная нелинейная оптика. — М.: Мир, 1976.
  • А. Ярив. Квантовая электроника. — М.: Советское радио, 1980.
  • С. А. Ахманов, Н. И. Коротеев. Методы нелинейной оптики в спектроскопии рассеяния света. — М.: 1981.
  • О. Звелто. Принципы лазеров. — М.: Мир, 1984.
  • И. Р. Шен. Принципы нелинейной оптики. — М.: 1989.

Статьи

Ссылки