Мышьяк

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая 194.186.54.206 (обсуждение) в 13:01, 12 февраля 2014 (Ссылки). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску
Мышьяк
← Германий | Селен →
33 P

As

Sb
Периодическая система элементовВодородГелийЛитийБериллийБорУглеродАзотКислородФторНеонНатрийМагнийАлюминийКремнийФосфорСераХлорАргонКалийКальцийСкандийТитанВанадийХромМарганецЖелезоКобальтНикельМедьЦинкГаллийГерманийМышьякСеленБромКриптонРубидийСтронцийИттрийЦирконийНиобийМолибденТехнецийРутенийРодийПалладийСереброКадмийИндийОловоСурьмаТеллурИодКсенонЦезийБарийЛантанЦерийПразеодимНеодимПрометийСамарийЕвропийГадолинийТербийДиспрозийГольмийЭрбийТулийИттербийЛютецийГафнийТанталВольфрамРенийОсмийИридийПлатинаЗолотоРтутьТаллийСвинецВисмутПолонийАстатРадонФранцийРадийАктинийТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделевийНобелийЛоуренсийРезерфордийДубнийСиборгийБорийХассийМейтнерийДармштадтийРентгенийКоперницийНихонийФлеровийМосковийЛиверморийТеннессинОганесон
Периодическая система элементов
33As
Внешний вид простого вещества

Зеленоватый полуметалл
Свойства атома
Название, символ, номер Мышьяк / Arsenicum (As), 33
Атомная масса
(молярная масса)
74,92160(2)[1] а. е. м. (г/моль)
Электронная конфигурация [Ar] 3d10 4s2 4p3
Радиус атома 139 пм
Химические свойства
Ковалентный радиус 120 пм
Радиус иона (+5e)46 (-3e)222 пм
Электроотрицательность 2,18 [2] (шкала Полинга)
Электродный потенциал 0
Степени окисления 5, 3, −3
Энергия ионизации
(первый электрон)
946,2(9,81) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 5,73 (серый мышьяк) г/см³
Температура кипения сублим. 886 K
Тройная точка 1090 К (817°C), 3700 кПа
Мол. теплота плавления (серый) 24,44 кДж/моль
Мол. теплота испарения 32,4 кДж/моль
Молярная теплоёмкость 25,05[3] Дж/(K·моль)
Молярный объём 13,1 см³/моль
Кристаллическая решётка простого вещества
Структура решётки тригональная
Параметры решётки a=0,4123 нм, α=54,17°
Температура Дебая 285 K
Прочие характеристики
Теплопроводность (300 K) (50,2) Вт/(м·К)
Номер CAS 7440-38-2
33
Мышьяк
74,9216
3d104s24p3

Мышья́к (лат. Arsenicum; обозначается символом As) — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) четвёртого периода периодической системы; имеет атомный номер 33. Простое вещество представляет собой хрупкий полуметалл стального цвета с зеленоватым оттенком (в серой аллотропной модификации). CAS-номер: 7440-38-2.

История

Шаблон:Sect-stub

Этимология

Название мышьяка в русском языке происходит от слова «мышь», в связи с употреблением его соединений для истребления мышей и крыс[4]. Греческое название ἀρσενικόν происходит от персидского زرنيخ (zarnik) — «жёлтый аурипигмент». Народная этимология возводит к др.-греч. ἀρσενικός — мужской[5].

Латинское название arsenicum является прямым заимствованием греческого ἀρσενικόν. С конца XVIII столетия слово «arsenicum» было предложено использовать для обозначения элементарного мышьяка (Лавуазье, 1789).

Высказывалось предположение[кем?] что слово «мышьяк» обязано своему происхождению органолептическим свойствам встречающихся на территории т. н. «Страны городов» мышьяковых месторождений — блеклых мышьяковистых руд, арсенопирита и др., которые обычно имеют тускло-серый с жирноватым блеском облик, напоминающий цвет мышиной шкурки, а при раскалывании или нагревании на углях издают запах, напоминающий запах мышиных экскрементов. При этом все иноязычные названия мышьяка, ассоциированные с мышами, рассматриваются как заимствования, восходящие к эпохе древнеарийского владычества (III—II тысячелетие до н. э.)[6][неавторитетный источник].

Нахождение в природе

Мышьяк — рассеянный элемент. Содержание в земной коре 1,7⋅10−4% по массе. В морской воде 0,003 мг/л[7]. Это вещество может встречаться в самородном состоянии, имеет вид металлически блестящих серых скорлупок или плотных масс, состоящих из маленьких зернышек. Известно около 200 мышьяксодержащих минералов. В небольших концентрациях часто содержится в свинцовых, медных и серебряных рудах. Довольно часто встречаются два природных соединения мышьяка с серой: оранжево-красный прозрачный реальгар AsS и лимонно-жёлтый аурипигмент As2S3. Минерал, имеющий промышленное значение — арсенопирит (мышьяковый колчедан) FeAsS или FeS2•FeAs2 (46 % As), также добывают мышьяковистый колчедан — лёллингит (FeAs2) (72,8 % As), скородит FeAsO4 (27 — 36 % As). Большая часть мышьяка добывается попутно при переработке мышьяксодержащих золотых, свинцово-цинковых, медноколчеданных и других руд.

Месторождения

Главный промышленный минерал мышьяка — арсенопирит FeAsS. Крупные медно-мышьяковые месторождения есть в Грузии, Средней Азии и Казахстане, в США, Швеции, Норвегии и Японии, мышьяково-кобальтовые — в Канаде, мышьяково-оловянные — в Боливии и Англии. Кроме того, известны золото-мышьяковые месторождения в США и Франции. Россия располагает многочисленными месторождениями мышьяка в Якутии, на Урале, в Сибири, Забайкалье и на Чукотке[8].

Изотопы

Известны 33 изотопа и, по крайней мере, 10 возбуждённых состояний ядерных изомеров. Из этих изотопов стабилен только 75As и природный мышьяк состоит только из этого изотопа. Наиболее долгоживущий радиоактивный изотоп 73As имеет период полураспада 80,3 дня.

Получение

Открытие способа получения металлического мышьяка (серого мышьяка) приписывают средневековому алхимику Альберту Великому, жившему в XIII в. Однако гораздо ранее греческие и арабские алхимики умели получать мышьяк в свободном виде, нагревая «белый мышьяк» (триоксид мышьяка) с различными органическими веществами.

Существует множество способов получения мышьяка: сублимацией природного мышьяка, способом термического разложения мышьякового колчедана, восстановлением мышьяковистого ангидрида и др.

В настоящее время для получения металлического мышьяка чаще всего нагревают арсенопирит в муфельных печах без доступа воздуха. При этом освобождается мышьяк, пары которого конденсируются и превращаются в твердый мышьяк в железных трубках, идущих от печей, и в особых керамических приёмниках. Остаток в печах потом нагревают при доступе воздуха, и тогда мышьяк превращается в As2O3. Металлический мышьяк получается в довольно незначительных количествах, и главная часть мышьякосодержащих руд перерабатывается в белый мышьяк, то есть в триоксид мышьяка — мышьяковистый ангидрид As2О3.

Основной способ получения — обжиг сульфидных руд с последующим восстановлением оксида углем[9]:

Шаблон:Sect-stub

Применение

Мышьяк используется для легирования сплавов свинца, идущих на приготовление дроби, так как при отливке дроби башенным способом капли сплава мышьяка со свинцом приобретают строго сферическую форму, и кроме того, прочность и твёрдость свинца возрастают.

Мышьяк особой чистоты (99,9999 %) используется для синтеза ряда полезных и важных полупроводниковых материалов — арсенидов (например, арсенида галлия) и других полупроводниковых материалов с кристаллической решёткой типа цинковой обманки.

Сульфидные соединения мышьяка — аурипигмент и реальгар — используются в живописи в качестве красок и в кожевенной отрасли промышленности в качестве средств для удаления волос с кожи.

В пиротехнике реальгар употребляется для получения «греческого», или «индийского», огня, возникающего при горении смеси реальгара с серой и селитрой (ярко-белое пламя).

Некоторые элементоорганические соединения мышьяка являются боевыми отравляющими веществами, например, люизит.

Многие из мышьяковых соединений в очень малых дозах применяются в качестве лекарств для борьбы с малокровием и рядом тяжелых заболеваний, так как оказывают клинически значимое стимулирующее влияние на ряд функций организма, в частности, на кроветворение. Из неорганических соединений мышьяка мышьяковистый ангидрид может применяться в медицине для приготовления пилюль и в зубоврачебной практике в виде пасты как некротизирующее лекарственное средство. Этот препарат называли «мышьяк» и применяли в стоматологии для девитализации пульпы зуба (см. пульпит). В настоящее время препараты мышьяка применяются в зубоврачебной практике редко из-за токсичности. Разработаны и применяются другие методы безболезненной денервации зуба под местной анестезией.

Биологическая роль и физиологическое действие

Мышьяк и все его соединения ядовиты. При остром отравлении мышьяком наблюдаются рвота, боли в животе, понос, угнетение центральной нервной системы. Сходство симптомов отравления мышьяком с симптомами холеры длительное время позволяло маскировать использование соединений мышьяка (чаще всего, триоксида мышьяка, т. н. «белого мышьяка») в качестве смертельного яда. Во Франции порошок триоксида мышьяка за высокую эффективность получил обиходное название «наследственный порошок» (фр. poudre de succession). Существует предположение, что соединениями мышьяка был отравлен Наполеон на острове Святой Елены. В 1832 году появилась надёжная качественная реакция на мышьяк — проба Марша, значительно повысившая эффективность диагностирования отравлений.

На территориях, где в почве и воде избыток мышьяка, он накапливается в щитовидной железе у людей и вызывает эндемический зоб.

Помощь и противоядия при отравлении мышьяком: приём водных растворов тиосульфата натрия Na2S2O3, промывание желудка, приём молока и творога; специфическое противоядие — унитиол. ПДК в воздухе для мышьяка 0,5мг/м³.

Работают с мышьяком в герметичных боксах, используя защитную спецодежду. Из-за высокой токсичности соединения мышьяка использовались как отравляющие вещества в Первую мировую войну.

В западных странах мышьяк был известен преимущественно как сильный яд, в то же время в традиционной китайской медицине он почти на протяжении двух тысяч лет использовался для лечения сифилиса и псориаза. Теперь медики доказали, что мышьяк оказывает положительный эффект и в борьбе с лейкемией. Китайские ученые обнаружили, что мышьяк атакует белки, которые отвечают за рост раковых клеток.

Мышьяк в малых дозах канцерогенен, его использование в качестве лекарства, «улучшающего кровь» (так называемый «белый мышьяк», например «Таблетки Бло с мышьяком», и др.) продолжалось до середины 1950-х гг., и внесло свой весомый вклад в развитие онкологических заболеваний.

Для лечения сонной болезни традиционно используют органические соединения мышьяка.

Недавно широкую огласку получила техногенная экологическая катастрофа на юге Индии — из-за чрезмерного отбора воды из водоносных горизонтов мышьяк стал поступать в питьевую воду. Это вызвало токсическое и онкологическое поражение у десятков тысяч людей.

Считалось, что «микродозы мышьяка, вводимые с осторожностью в растущий организм, способствуют росту костей человека и животных в длину и толщину, в отдельных случаях рост костей может быть вызван микродозами мышьяка в период окончания роста»[10].

Считалось также, что «При длительном потреблении небольших доз мышьяка у организма вырабатывается иммунитет: Этот факт установлен как для людей, так и для животных. Известны случаи, когда привычные потребители мышьяка принимали сразу дозы, в несколько раз превышающие смертельную, и оставались здоровыми. Опыты на животных показали своеобразие этой привычки. Оказалось, что животное, привыкшее к мышьяку при его употреблении, быстро погибает, если значительно меньшая доза вводится в кровь или под кожу.» Однако такое «привыкание» носит очень ограниченный характер, в отношении т. н. «острой токсичности», и не защищает от новообразований. Тем не менее, в настоящее время исследуется влияние микродоз мышьяксодержащих препаратов в качестве противоракового средства.


Известны экстремофильные бактерии, которые способны выживать при высоких концентрациях арсената в окружающей среде. Было высказано предположение, что в случае штамма GFAJ-1 мышьяк замещает фосфор в биохимических реакциях, в частности, входит в состав ДНК[11][12][13], однако это предположение не подтвердилось[14].

Загрязнения мышьяком

На территории Российской Федерации в г. Скопин Рязанской области вследствие многолетней работы местного металлургического комбината СМК «Металлург» в могильниках предприятия было захоронено около полутора тысяч тонн пылеобразных отходов с высоким содержанием мышьяка. С учётом того, что пяти миллиграммов мышьяка достаточно, чтобы отравить человека, в могильниках находится более 200 миллиардов смертельных доз мышьяка[15].

Известно также о загрязнении отходами военного производства, содержащими мышьяк, в городе Свирск на берегу Братского водохранилища[16][17].

Примечания

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047-1078. — doi:10.1351/PAC-REP-13-03-02.
  2. Arsenic: electronegativities (англ.). WebElements. Дата обращения: 5 августа 2010.
  3. Редкол.: Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1992. — Т. 3. — С. 157. — 639 с. — 50 000 экз. — ISBN 5—85270—039—8.
  4. Мышьяк. Большой Энциклопедический словарь (2000). Дата обращения: 30 января 2014.
  5. Frisk H. Griechisches etymologisches Wörterbuch, Band I. — Heidelberg: Carl Winter’s Universitätsbuchhandlung. — 1960. — С. 152.
  6. [1] — гомеопатический сайт, анонимная статья.
  7. J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
  8. Онлайн Энциклопедия Кругосвет. Мышьяк.
  9. Неорганическая химия: В 3т. /под ред. Ю. Д. Третьякова. Т. 2 : Химия непереходных элементов : учебник для студ. учреждений высш проф. образования/ А. А. Дроздов, В. П. Зломанов, Г. Н. Мазо, Ф. М. Спиридонов — 2-е изд.,перераб. — М. : Издательский центр «Академия», 2011. — 368 с.
  10. Фармакология проф. Николаева. 1943 г. 1-е издание
  11. Wolfe-Simon F, Blum JS, Kulp TR; et al. (2010). "A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus". Science. doi:10.1126/science.1197258. PMID 21127214. {{cite journal}}: Неизвестный параметр |month= игнорируется (справка); Явное указание et al. в: |author= (справка)Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка)
  12. Arsenic-eating microbe may redefine chemistry of life (англ.). naturenews. Дата обращения: 26 января 2011. Архивировано 24 февраля 2012 года.
  13. Астробиологическое открытие ведёт насыщенную ядом жизнь. membrana. Дата обращения: 26 января 2011. Архивировано 24 февраля 2012 года.
  14. Reaves, Marshall Louis (2012-07-27). "Absence of Detectable Arsenate in DNA from Arsenate-Grown GFAJ-1 Cells". Science. 337 (6093): 470–473. doi:10.1126/science.1219861. ISSN 1095-9203 0036-8075, 1095-9203. Дата обращения: 25 декабря 2012. {{cite journal}}: Неизвестный параметр |coauthors= игнорируется (|author= предлагается) (справка); Проверьте значение |issn= (справка)
  15. Свиридова Ольга. Чисто рязанское отравление (html). Независимая газета (16 мая 2005). Дата обращения: 24 сентября 2009. Архивировано 22 августа 2011 года.
  16. В Свирске коровы дают молоко с мышьяком
  17. Экологическая обстановка в Иркутской области

Ссылки

Шаблон:Link FA Шаблон:Link FA Шаблон:Link GA