Парадокс субмарины
Парадо́кс субмари́ны (иногда называемый парадо́ксом Са́ппли) — мысленный эксперимент в рамках теории относительности Эйнштейна, приводящий к трудноразрешимому парадоксу.
Согласно специальной теории относительности Эйнштейна с точки зрения неподвижного наблюдателя размеры объекта, движущегося со скоростью, близкой к скорости света, уменьшаются в направлении движения. Однако с точки зрения объекта, напротив, именно неподвижные наблюдатели кажутся короче.
Если предположить, что некая субмарина движется под водой с околосветовой скоростью, неподвижным наблюдателям она покажется сжавшейся. Плотность её, соответственно, должна увеличиться, что непременно потянет её на дно. Но со стороны объекта — находящегося на борту субмарины экипажа — всё воспринималось бы с точностью до наоборот: «бегущая» вода вокруг них сжимается, а значит становится более плотной и выталкивает лодку на поверхность.
В 1989 году Джеймс Саппли разрешил парадокс с использованием специальной теории относительности. В честь него эту задачу называют также «Парадокс Саппли».
В 2003 году бразилец Джордж Матсас из Сан-Паулу рассмотрел этот парадокс, используя общую теорию относительности. У обоих учёных вывод был одинаков: субмарина будет погружаться.
Учёные объясняют парадокс по-разному. На слои и на лодку действует масса факторов, требующих обязательного учёта для успешного решения этого парадокса. Здесь и увеличение воздействия гравитации на лодку, которая потянет её вниз, и искажение формы слоёв воды вверх (они «задираются» с точки зрения субмарины из-за нарушения одновременности начала ускорения).
Суть решения
Всё рассмотрение можно вести в рамках специальной теории относительности, переходя в движущуюся с ускорением систему отсчёта (в которой удобно ввести координаты Риндлера). Проще, однако, рассмотреть всё из инерциальной системы отсчёта, где ускорение жидкости вызывается какой-либо причиной, например, жидкость электрически заряжена и находится в электрическом поле, либо её подпирает ускоренно движущаяся стенка. Важно, что эта причина не ускоряет субмарину — например, подводная лодка нейтральна, либо не контактирует со стенкой. Ограничимся начальным моментом времени, когда жидкость покоится, а скорость субмарины равна 0 для «неподвижного» случая, и (с соответствующим ) для «движущегося».
С точки зрения инерциальных наблюдателей ускорение подводной лодки (не важно, в покое или в движении) вызывается передачей импульса от молекул жидкости к молекулам подводной лодки — это микроскопическое определение давления. Эта передача пропорциональна площади поверхности жидкости, контактирующей с субмариной, и соответственно уменьшается в раз при сокращении подводной лодки из-за её движения. Поэтому передача импульса равна для «неподвижной» субмарины, и для «движущейся». Теперь несложно вычислить ускорения, получаемые субмаринами в начальный момент: для «неподвижной» подлодки это будет величина, по условию совпадающая с ускорением жидкости
где — масса субмарины, а для «движущейся»
где учтено, что подводная лодка ускоряется перпендикулярно направлению своего движения. Как видно, ускорение «движущейся» субмарины меньше, чем покоящейся — она затонет.
Теперь рассмотрим ситуацию в системе отсчёта, где подлодка «неподвижна», но двигается жидкость. Плотность жидкости из-за её релятивистского сокращения возрастёт, что увеличит силу Архимеда в раз, то есть передача импульса станет равна , что вызовет ускорение субмарины
Однако при переходе в эту инерциальную систему отсчёта ускорение жидкости также изменится. Выделив в жидкости некоторый уровень, имеем в исходной системе его уравнение движения , а в новой, согласно преобразованиям Лоренца для месторасположения подводной лодки , получаем то есть ускорение уровня жидкости, измеряемое с субмарины, равно . Оно больше ускорения подлодки — она затонет.
Точно такой же результат получается, если взять правильное уравнение гиперболического движения вместо приближённого, верного лишь вблизи . Есть ещё некоторый эффект, связанный с нарушением одновременности ускорения различных частей жидкости относительно системы отсчёта субмарины, но он может быть сведён к пренебрежимо малой величине выбором малого ускорения и/или размера субмарины в направлении движения (см. работу Матсаса для подробного разбора). Не всякое относительно движущееся является в реальности таковым, потому как для примера если взять допустим человека бегущего по планете Земля, и отталкивающего этим Землю в противоположную направлению вектора его движения сторону, то станет ясно, что Земля движется при каждом его новом шаге опускаемом на нее, по причине инертностных сил воздействующих на нее, каждый раз с менее большей скоростью, чем та сила воздействия оказываемая на ее поверхность опирающейся на нее ногой этого человека. Сам же он относительно своего воздействия на ее поверхность по причине меньших инертностных сил присутствующих в его теле, делает это гораздо при этом меньшее количество времени, относительно того какое время он разгонял при этом Землю, а это значит, что движение человека является при этом менее относительным по его потенциалу относительно Земли, а движение самой Земли происходящее по причине его ног, является более относительным относительно самого этого человека, так как человек есть первопричина воздействия на Землю, потому как он первый производит свое воздействие, и движение, а не Земля это делает за место него. Такое же действие обстоит и с подводной лодкой, и пулей, они имеют собственную начальную первичную оказываемую силу своего воздействия, а уже свою подобную же энергию имеет и вода, ведь она так же нестабильна при этом в ее внутренней молекулярной среде, по причине Броуновского движения. Поэтому в реальности теория относительности выглядет не так как ее представляли ученые в своем уме.