Циркуля́цией ве́кторного по́ля называется криволинейный интеграл второго рода, взятый по произвольному замкнутому контуру Γ. По определению
где — векторное поле (или вектор-функция), определенное в некоторой области, содержащей в себе контур Γ,
— бесконечно малое приращение радиус-вектора . Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру.
Циркуляция по контуру, ограничивающему несколько смежных поверхностей, равна сумме циркуляций по контурам, ограничивающим каждую поверхность в отдельности, то есть
В случае, если контур плоский, например лежит в плоскости OXY, справедлива формула Грина
где — плоскость, ограничиваемая контуром (внутренность контура).
Физическая интерпретация
Если F — некоторое силовое поле, тогда циркуляция этого поля по некоторому произвольному контуру Γ есть работа этого поля при перемещении точки вдоль контура Г. Отсюда непосредственно следует критерий потенциальности поля: поле является потенциальным когда циркуляция его по произвольному замкнутому контуру есть нуль. Или же, как следует из формулы Стокса, ротор этого поля есть нуль.
Литература
Фихтенгольц Г. М.Курс дифференциального и интегрального исчисления. Т.3. М.: «Наука», 1960.
Савельев И. В. Курс общей физики. Т2. М.: Астрель • АСТ, 2004.