Колебательный контур
Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).
Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания.
Резонансная частота контура определяется так называемой формулой Томсона:
Принцип действия
Пусть конденсатор ёмкостью C заряжен до напряжения . Энергия, запасённая в конденсаторе составляет
При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток , что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.
Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора . Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна
- , где — индуктивность катушки, — максимальное значение тока.
После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения .
В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.
В общем, описанные выше процессы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи, больше тока проходящего через весь контур, причем эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличие от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.
Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.
Математическое описание процессов
Напряжение на идеальной катушке индуктивности при изменении протекающего тока:
Ток, протекающий через идеальный конденсатор, при изменении напряжения на нём:
Из правил Кирхгофа, для цепи, составленной из параллельно соединённых конденсатора и катушки следует:
- , — для напряжений,
и
- — для токов.
Совместно решая систему дифференциальных уравнений (дифференцируя одно из уравнений и подставляя результат в другое), получаем:
Это дифференциальное уравнение гармонического осциллятора с циклической частотой собственных колебаний (она называется собственной частотой гармонического осциллятора).
Решением этого уравнения 2-го порядка является выражение, зависящее от 2 начальных условий:
где — некая постоянная, определяемая начальными условиями, называемая амплитудой колебаний, — также некоторая постоянная, зависящая от начальных условий, называемая начальной фазой.
Например, при начальных условиях и амплитуде начального тока решение сведётся к:
Решение может быть записано также в виде
где и — некоторые константы, которые связаны с амплитудой и фазой следующими тригонометрическими соотношениями:
- ,
- .
Комплексное сопротивление (импеданс) колебательного контура
Колебательный контур может быть рассмотрен как двухполюсник, представляющий собой параллельное включение конденсатора и катушки индуктивности. Комплексное сопротивление такого двухполюсника можно записать как
где i — мнимая единица.
Для такого двухполюсника может быть определена т. н. характеристическая частота (или резонансная частота), когда импеданс колебательного контура стремится к бесконечности (знаменатель дроби стремится к нулю).
Эта частота равна
и совпадает по значению с собственной частотой колебательного контура.
Из этого уравнения следует, что на одной и той же частоте может работать множество контуров с разными величинами L и C, но с одинаковым произведением LC.
См. также
- Электрический импеданс
- Многополюсник
- Электромагнитное излучение
- Потенциальная энергия
- Кинетическая энергия
- RC-цепь
- LR-цепь
- Гетеродинный индикатор резонанса
Литература
- Скрипников Ю. Ф. Колебательный контур — М.: Энергия, 1970—128 с.: ил. — (МРБ; Вып. 739)
- Изюмов Н. М., Линде Д. П. Основы радиотехники. - М.:Радио и связь, 1983