Парадокс шеста и сарая
Парадокс шеста и сарая (парадокс амбара и жерди, парадокс лестницы) - это мысленный эксперимент в рамках специальной теории относительности. В нём рассматривается шест, летящий параллельно земле и потому подверженный лоренцевому сокращению длины. В результате шест уместится в сарай, в который он в обычных условиях не поместился бы. С другой стороны, с точки зрения шеста движется сарай, а шест покоится. Тогда сократится длина сарая, и шест, и без того слишком длинный, не войдёт в сарай. Кажущийся парадокс возникает по причине предположения об абсолютной одновременности. Так, шест помещается в сарай, если оба конца шеста одновременно находятся внутри сарая. В релиятивистике одновременность относительна, поэтому вопрос о том, находится ли шест в сарае, необходимо рассматривать относительно каждого наблюдателя - как шеста, так и сарая. Таким образом, парадокс разрешим.
Суть парадокса
В простейшей версии парадокса есть сарай с открытыми дверями спереди и сзади, а также шест, не помещающийся в сарай в состоянии покоя. Мы разгоняем шест до высокой горизонтальной скорости, пуская его сквозь сарай. Из-за своей высокой скорости шест подвергается эффекту сокращения длины, и становится значительно короче. В результате, пролетая через сарай, на некоторое время шест полностью помещается внутри него. Чтобы это показать, мы могли бы одновременно закрыть обе двери гаража в момент, пока шест находится внутри.
Пока никакого парадокса не наблюдается. Он возникает тогда, когда мы рассмотрим тот же эффект с точки зрения сарая. Поскольку наблюдатель на шесте движется относительно инерциальной системы отсчёта сарая с постоянной скоростью, система отсчёта этого наблюдателя также инерциальна. Отсюда, согласно принципу относительности, для системы отсчёта шеста справедливы те же самые законы физики. Тогда для шеста он сам покоится, а сарай, напротив, летит на него с высокой скоростью. Значит, сокращается длина сарая, и можно заключить, что при своём пролёте сарай не мог полностью вместить шест. Следовательно, мы не можем закрыть двери сарая с обеих сторон, заключив внутри шест. В данном противоречии и содержится парадокс.
Разрешение
Решение парадокса лежит в относительности одновременности: что одновременно в одной системе отсчёта (например, сарая) может быть неодновременным в другой (в данном случае шеста). Когда мы говорим, что шест "помещается" в сарай, на самом деле мы имеем в виду, что и передний, и задний края шеста находились внутри сарая. Другими словами, перед и зад шеста были в сарае одновременно. Поскольку одновременность относительна, в двух разных системах отсчёта шест мог как поместиться, так и не поместиться, причём наблюдатели в обоих системах будут правы. С точки зрения сарая передняя и задняя часть шеста в какой-то момент одновременно находились внутри сарая, поэтому шест поместился. Однако с точки зрения шеста эти события произошли не одновременно, и шест не поместился в сарай.
Это легко увидеть, если рассмотреть следующую ситуацию. В системе отсчёта сарая двери одновременно на короткое время закрываются, как только шест полностью войдёт в сарай. Теперь происходящее рассматривается в системе отсчёта сарая. Сначала передняя часть шеста достигает задней двери сарая. Эта дверь закрывается, а затем открывается, дав шесту возможность пролететь насквозь. Через некоторое время до входной двери сарая долетает задний конец шеста, и, в свою очередь, закрывается и открывается передняя дверь. Отсюда видно, что поскольку одновременность относительна, обе двери необязательно окажутся закрытыми в одно время, и шесту не нужно полностью помещаться в сарай.
Хорошей иллюстрацией к происходящему является приведённая ниже диаграмма Минковского. Она построена в системе отсчёта сарая. Вертикальный голубой диапазон показывает пространство-время сарая, красный - шеста. За пространство и время отвечают оси x и t у сарая и x' и t' у шеста.
В системе отсчёта сарая в каждый момент времени шест отображается на диаграмме набором точек, выстроенных в горизонтальную линию параллельно оси x внутри красного диапазона. Жирная синяя линия, лежащая в синем сегменте сарая, отображает шест в момент, когда он полностью находится в сарае. Однако в системе отсчёта шеста одновременные события располагаются по линиям, параллельным оси x'. Таким образом, положение шеста в любой момент времени выражено пересечением этих линий с красным сегментом. Как видно на схеме, жирная красная линия никогда полностью не лежит в синем диапазоне, а значит, шест никогда не полностью не находится в сарае.
Запирание шеста в сарае
В усложненном варианте парадокса можно физически запереть шест в сарае, как только он полностью войдёт в него. Для этого можно не открывать заднюю дверь после того, как она закроется. Положим, что в системе отсчёта сарая задняя дверь полностью станционарна, то есть шест в момент столкновения с ней мгновенно останавливается. С другой стороны, ко времени соприкосновения передняя дверь также закроется, и в результате шест окажется полностью заперт внутри сарая. Однако, поскольку относительная скорость шеста становится равной нулю, он больше не подвержен сокращению длины, и теперь его длина превышает длину сарая. В итоге шест либо согнётся, либо сломается, либо его разорвёт.
Так, парадокс возникает тогда, когда мы рассматриваем происходящее в системе отсчёта шеста. В вышеописанных рассуждениях подразумевался тот факт, что длина шеста в собственной системе отсчёта превышает длину сарая. Тогда как вообще можно было закрыть обе двери сарая, задержав шест внутри?
Здесь стоит отметить общее свойство релятивистики: рассмотрев систему отсчёта сарая, мы заключили, что мы действительно запираем в нём шест. Тогда это должно быть верно и в других системах отсчёта, поскольку шест не может сломаться в одной СО и остаться целым в другой. Чтобы разрешить противоречие, необходимо найти объяснение тому, почему шест удалось запереть внутри сарая.
Объясняется это следующим образом. Несмотря на то, что в СО шеста все его части останавливаются одновременно, в СО сарая, из-за относительности одновременности, эти действия происходят в разное время. Иными словами, шест разгоняется и тормозит неравномерно, сначала передняя часть, затем задняя. К моменту торможения задней части шест уже полностью в сарае.
Парадокс и распределение силы
Что, если задняя дверь сарая всегда остаётся закрытой? Пусть она настолько твёрдая, что при столкновении с ней шест тут же останавливается, не пробивая её. Затем, по описанному выше сценарию, в СО сарая настанет момент, когда шест полностью поместится в сарае, прежде чем он столкнётся с задней дверью. Однако, в СО шеста, он слишком велик, чтобы поместиться в сарай, поэтому ко времени столкновения со стенкой задняя часть шеста до сих пор не достигла передней двери сарая. Выглядит как парадокс. Вопрос в следующем: пересечёт ли задний конец шеста переднюю дверь сарая или нет?
Сложность возникает из предположения, что шест абсолютно цельный, то есть сохраняет свою форму при любых воздействиях. Шесты в повседневной жизни довольно цельные и негибкие. Однако обладание свойством абсолютной цельности означало бы, что сила распространяется по объекту с бесконечно большой скоростью. Иначе говоря, если объект толкнуть с одной стороны, другая сдвинется немедленно. Это нарушает принцип относительности, гласящий, что предельной скоростью распространения физических взаимодействий является скорость света. Заметить разницу в реальной жизни практически невозможно, однако в рассматриваемой ситуации данный факт имеет значение. Отсюда следует, что в специальной теории относительности объект не может быть абсолютно цельным.
В данном случае, в тот момент, когда передний конец шеста сталкивается с задней дверью сарая, задний конец ещё "не знает" об этом, и продолжает двигаться (и шест "сжимается"). И в системе отсчёта сарая, и в собственной системе отсчёта шеста задняя часть шеста в момент столкновения движется по крайней мере до тех пор, пока движущаяся со скоростью света сила не достигнет конца шеста. В тот момент шест на самом деле окажется ещё короче, чем он стал в результате сокращения длины, поэтому задний конец шеста будет уже в сарае. Описанное подтверждается вычислениями в обоих системах отсчёта.
Остаётся неопределённым, что произойдёт, когда сила доберётся до заднего конца шеста (зелёная зона на диаграмме). Шест может разорвать на мелкие кусочки, а если же он окажется достаточно эластичным, он растянется обратно до своей изначальной длины, вывалившись из задней двери сарая.
Вариация с человеком, падающим в яму
Рассматриваемый парадокс был изначально предложен и разрешён Вольфгангом Риндлером. В его оригинальной формулировке быстро бегущий человек, роль которого играет длинная жердь, падает в яму. Предполагается, что жердь оказывается полностью над ямой, прежде чем ускорение потянет вниз каждую точку жерди.
С точки зрения ямы, жердь подвергается продольному сокращению длины и помещается в яму. Однако, с точки зрения жерди, сокращается длина ямы, и в итоге жерди не удастся упасть в яму.
На самом деле, ускорение, тянущее вниз одновременно все точки жерди в СО ямы, в собственной СО жерди тянет точки не одновременно. В системе отсчёта жерди сначала вниз ускорится передний конец жерди, и затем остальные её бесконечно малые части, постепенно до заднего конца. В результате в своей системе отсчёта жердь согнётся. Стоит подчеркнуть, что поскольку жердь сгибается в собственной инерциальной системе отчёта, то имеет место настоящий физический изгиб, сопровождаемый видимым напряжением жерди во всех СО.
Парадокс кольца и стержня
Рассмотрим более сложный парадокс, в котором действие происходит в неинерциальных системах отсчёта. Сначала человек движется по горизонтали, а затем падает вниз. Человек (сегментированная жердь) физически деформируется, поскольку жердь изгибается в одной СО и остаётся прямой в другой. Эти аспекты привносят в парадокс новые проблемы, связанные с жёсткостью жерди, размывая основную суть кажущегося противоречия. Похожая, но более простая проблема, в которой встречаются только инерциальные системы отсчёта, получила название парадокса кольца и стержня (Ferraro 2007). Стержень, который несколько длиннее диаметра кольца, движется вправо вверх. Длинная ось стержня расположена в горизонтальной плоскости, параллельно плоскости кольца. Кольцо в этот момент покоится. Если в ходе движения стержня его центр в какой-то момент совпадёт с центром кольца, стержень укоротится под действием лоренцева сокращения длины и пройдёт сквозь кольцо. Парадокс появляется при рассмотрении той же ситуации в СО стержня. Теперь кольцо движется влево вниз, сокращаясь вдоль своей длины по горизонтали. Длина стержня же останется прежней. Каким образом тогда стержень пройдёт сквозь кольцо?