Аэрогель

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая V1adis1av (обсуждение | вклад) в 15:16, 13 августа 2015. Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску
Блок аэрогеля в руке
Кирпич массой 2,5 кг стоит на куске аэрогеля массой 2,38 г

Аэроге́ли (от лат. aer — воздух и gelatus — замороженный) — класс материалов, представляющих собой гель, в котором жидкая фаза полностью замещена газообразной. Такие материалы обладают рекордно низкой плотностью и демонстрируют ряд уникальных свойств: твёрдость, прозрачность, жаропрочность, чрезвычайно низкую теплопроводность и т. д. Распространены аэрогели на основе аморфного диоксида кремния, глинозёмов, а также оксидов хрома и олова. В начале 1990-х получены первые образцы аэрогеля на основе углерода.

В технике безопасности аэрогелем также называется пыль, осевшая на стенах, потолках, конструктивных частях оборудования и т. д.[1]

Структура

Аэрогели относятся к классу мезопористых материалов, в которых полости занимают не менее 50 %, а как правило, 90—99 % объёма, а плотность составляет от 1 до 150 кг/м3. По структуре аэрогели представляют собой древовидную сеть из объединённых в кластеры наночастиц размером 2—5 нм и пор размерами до 100 нм.

История

Первенство в изобретении признано за химиком Стивеном Кистлером (Steven Kistler) из Тихоокеанского колледжа (College of the Pacific) в Стоктоне, Калифорния, США, опубликовавшим в 1931 году в журнале Nature свои результаты.

Кистлер заменял жидкость в геле на метанол, а потом нагревал гель под давлением до достижения критической температуры метанола (240 °C). Метанол уходил из геля, не уменьшаясь в объёме; соответственно, и гель «высыхал», почти не ужимаясь.

Свойства

Аэрогели — хорошие теплоизоляторы

На ощупь аэрогели напоминают легкую, но твёрдую пену, похожую на пенопласт. При сильной нагрузке аэрогель трескается, но в целом это весьма прочный материал — образец аэрогеля может выдержать нагрузку в 2000 раз больше собственного веса. Аэрогели, в особенности кварцевые, — хорошие теплоизоляторы. Они также очень гигроскопичны.

По внешнему виду аэрогели полупрозрачны. За счёт рэлеевского рассеяния света на древовидных структурах они выглядят голубоватыми в отражённом свете и светло-жёлтыми в проходящем.

Виды аэрогелей

Наиболее распространены кварцевые аэрогели, по плотности среди твердых тел они уступают лишь металлическим микрорешёткам, чья плотность может достигать — 0,9 кг/м3, что на одну десятую меньше лучших показателей плотности аэрогелей — 1 кг/м3. В воздушной среде при нормальных условиях плотность такой металлической микрорешётки равна 1,9 кг/м3 за счёт внутрирешёточного воздуха. Это в 500 раз меньше плотности воды и всего в 1,5 раза больше плотности воздуха. Кварцевые аэрогели пропускают свет в мягком ультрафиолете и видимой области (с длиной волны больше 300 нм) и инфракрасном диапазоне, однако в инфракрасной области присутствуют типичные для кварца, получаемого обезвоживанием силикагелей, полосы гидроксила при 3500 см−1 и 1600 см−1[2]. Благодаря чрезвычайно низкой теплопроводности (~0,017 Вт/(м·К) в воздухе при атмосферном давлении),[3], меньшей, чем теплопроводность воздуха (0,024 Вт/(м·К)), они применяются в строительстве в качестве теплоизолирующих и теплоудерживающих материалов. Температура плавления кварцевого аэрогеля составляет 1200 °C.

Углеродные аэрогели состоят из наночастиц, ковалентно связанных друг с другом. Они электропроводны и могут использоваться в качестве электродов в конденсаторах. За счёт очень большой площади внутренней поверхности (до 800 м2/грамм) углеродные аэрогели нашли применение в производстве суперконденсаторов (ионисторов) ёмкостью в тысячи фарад. В настоящее время достигнуты показатели в 104 Ф/грамм и 77 Ф/см3. Углеродные аэрогели отражают всего 0,3 % излучения в диапазоне длин волн от 250 до 14 300 нм, что делает их эффективными поглотителями солнечного света.

Глинозёмные аэрогели из оксида алюминия с добавками других металлов используются в качестве катализаторов. На базе алюмооксидных аэрогелей с добавками гадолиния и тербия в НАСА был разработан детектор высокоскоростных соударений: в месте столкновения частицы с поверхностью происходит флюоресценция, интенсивность которой зависит от скорости соударения.

Использование

132 ячейки с аэрогелем космического аппарата «Стардаст» (NASA)

Помимо многочисленных технических применений, обусловленных вышеперечисленными уникальными свойствами, аэрогель известен прежде всего использованием в проекте «Стардаст» в качестве материала для ловушек космической пыли.

Поскольку показатель преломления аэрогелей занимает промежуточное положение между показателями преломления газообразных и жидких (твёрдых) веществ, аэрогель используется как радиатор в черенковских детекторах заряженных частиц.

Аэрогели могут использоваться в качестве газовых и жидкостных фильтров.

Аэрогель на основе оксида железа с алюминиевыми наночастицами может служить взрывчаткой (разработка Ливерморской национальной лаборатории им. Э. Лоуренса, США).

В начале 2006 некоторые компании, например, United Nuclear[4], заявили о начале продаж аэрогеля организациям и частным лицам. В зависимости от размера и формы образца, цена составляет от $25 (фрагменты) до $125 (кусочек, помещающийся на ладони).

В настоящее время на основе аэрогеля изготавливаются теплоизоляционные материалы для промышленного применения.

См. также

Примечания

Ссылки