Трапеция

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая 94.41.225.45 (обсуждение) в 15:14, 28 октября 2015 (Свойства и признаки равнобедренной трапеции). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Трапе́ция (от др.-греч. τραπέζιον — «столик»; τράπεζα — «стол, трапеза») — выпуклый четырёхугольник, у которого две стороны параллельны, а две другие не параллельны[1]. Параллельные противоположные стороны называются основаниями трапеции, а две другие боковыми сторонами. Средняя линия — отрезок, соединяющий середины боковых сторон.

Варианты определения

Существует и другое определение трапеции.

Трапеция это выпуклый четырёхугольник у которого две стороны параллельны [2][3]. Согласно этому определению параллелограмм и прямоугольник это частные случаи трапеции. Приведенные ниже формулы верны для обоих определений трапеции.

Связанные определения

Элементы трапеции

Равнобедренная трапеция
Прямоугольная трапеция
Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой
  • Параллельные противоположные стороны называются основаниями трапеции.
  • Две другие стороны называются боковыми сторонами.
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.

Виды трапеций

  • Трапеция, у которой боковые стороны равны, называется равнобокой, равнобочной или равнобедренной трапецией.
  • Трапеция, имеющая прямые углы при боковой стороне, называется прямоугольной.

Общие свойства

  • Средняя линия трапеции параллельна основаниям и равна их полусумме.
  • Отрезок, соединяющий середины диагоналей, равен половине разности оснований и лежит на средней линии.
  • (Обобщённая теорема Фалеса). Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.
  • В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон.
  • Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен среднему гармоническому длин оснований трапеции (формула Буракова).
  • Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
  • Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
  • Треугольники, лежащие на основаниях при пересечении диагоналей, подобные.
  • Треугольники, лежащие на боковых сторонах, равновеликие.
  • Если отношение оснований равно , то отношение площадей треугольников, лежащих на основаниях, равно .
  • Высота трапеции определяется формулой:
где  — большее основание,  — меньшее основание, и  — боковые стороны.
  • Диагонали трапеции и связаны со сторонами соотношением:
Их можно выразить в явном виде:
Если же известна высота , то

Свойства и признаки равнобедренной трапеции

  • Прямая, которая проходит через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции.
  • Высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
  • Углы при любом основании равны.
  • Сумма противоположных углов равна 180°.
  • Длины диагоналей равны.
  • Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная и описанная кекс

  • Если сумма оснований трапеции равна сумме боковых сторон, то в неё можно вписать окружность. Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований).
  • В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.
  • Если трапеция равнобедренная, то около неё можно описать окружность.
  • Радиус описанной окружности равнобедренной трапеции:[источник не указан 3477 дней]
где  — боковая сторона,  — бо́льшее основание,  — меньшее основание,  — диагонали равнобедренной трапеции.
  • Если , то в равнобедренную трапецию можно вписать окружность радиуса
  • Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и  — то .

Площадь

Здесь приведены формулы, свойственные именно трапеции. См. также формулы для площади произвольных четырёхугольников.
  • В случае, если и  — основания и  — высота, формула площади:
  • В случае, если  — средняя линия и  — высота, формула площади:

* Приведённые выше две формулы эквивалентны, так как полусумма оснований равняется средней линии трапеции:

  • Формула, где  — основания, и  — боковые стороны трапеции:
или
  • Площадь равнобедренной трапеции с радиусом вписанной окружности, равным , и углом при основании :
  • Площадь равнобедренной трапеции:
где  — боковая сторона,  — бо́льшее основание,  — меньшее основание,  — угол между бо́льшим основанием и боковой стороной.[4].
  • Площадь равнобедренной трапеции через ее стороны

См. также

Примечания

  1. Математический энциклопедический словарь. — М.: «Сов. энциклопедия», 1988. — С. 587.
  2. Вся элементарная математика
  3. Wolfram MathWorld
  4. Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов 1986. С. 184