Дыхательная цепь переноса электронов

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Эрг (обсуждение | вклад) в 18:21, 9 ноября 2015. Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Дыхательная цепь переноса электронов (ЭТЦ, англ. ETC, Electron transport chain) — система структурно и функционально связанных трансмембранных белков и переносчиков электронов. ЭТЦ запасает энергию, выделяющуюся в ходе окисления НАД∙Н и ФАДН2 молекулярным кислородом (в случае аэробного дыхания) или иными веществами (в случае анаэробного) в форме трансмембранного протонного потенциала за счёт последовательного переноса электрона по цепи, сопряжённого с перекачкой протонов через мембрану.

У прокариот ЭТЦ локализована в ЦПМ, у эукариот — на внутренней мембране митохондрий. Переносчики расположены по своему окислительно-восстановительному потенциалу, транспорт электрона на всём протяжении цепи протекает самопроизвольно.

Протонный потенциал преобразуется АТФ-синтазой в энергию химических связей АТФ. Сопряжённая работа ЭТЦ и АТФ-синтазы носит название окислительного фосфорилирования.

Цепь переноса электронов митохондрий

Комплексы дыхательной цепи

Кислород, поступающий в митохондрии из крови, связывается с атомом железа в геме цитохрома a3 в форме молекулы O2. Каждый из атомов кислорода присоединяет по два электрона и два протона и превращается в молекулу воды.

Влияние окислительного потенциала

Основная статья: Окислительно-восстановительный потенциал

Восстановитель Окислитель Ео´, В
Н2 2H+ — 0,42
НАД • Н + Н+ НАД+ — 0,32
НАДФ • Н + Н+ НАДФ+ — 0,32
Флавопротеин (восстановл.) Флавопротеин (окисл.) — 0,12
Кофермент Q • Н2 Кофермент Q + 0,04
Цитохром B (Fe2+) Цитохром B (Fe3+) + 0,07
Цитохром C1 (Fe2+) Цитохром C1 (Fe3+) + 0,23
ЦитохромыA (Fe2+) ЦитохромыA(Fe3+) + 0,29
ЦитохромыA3 (Fe2+) Цитохромы A3 (Fe3+) +0,55
H2O ½ О2 + 0,82

Система с более низким окислительно-восстановительным потенциалом обладает большей способностью отдавать электроны системе с большим потенциалом. Например, пара НАД•Н+/НАД+ , редокс-потенциал которой равен — 0,32 В будет отдавать свои электроны окислительно-восстановительной паре флавопротеин (восстановл.) / флавопротеин (окислен.), имеющей больший потенциал −0,12 В. Большая величина редокс-потенциала окислительно-восстановительной пары вода/кислород (+0,82 В) указывает на то, что у этой пары способность отдавать электроны выражена очень слабо[1].

Ингибиторы дыхательной цепи

Некоторые вещества блокируют перенос электронов через комплексы I, II, III, IV .

Электронтранспортные цепи бактерий

Бактерии, в отличие от митохондрий, используют большой набор доноров и акцепторов электронов, а также разные пути переноса электрона между ними. Эти пути могут осуществляться одновременно, например, E. coli при выращивании на среде, содержащей глюкозу в качестве основного источника органического вещества, использует две НАДН дегидрогеназы и две хинолоксидазы, что означает наличие 4 путей транспорта электрона. Большинство ферментов ЭТЦ индуцибельны и синтезируются только в случае, если путь, в который они входят, востребован.

Донором электрона помимо органического вещества у бактерий могут выступать молекулярный водород, угарный газ, аммоний, нитрит, сера, сульфид, двухвалентное железо. Вместо НАДН и сукцинатдегидрогеназы могут присутствовать формиат-, лактат-, глицеральдегид-3-фосфатдегидрогеназа, гидрогеназа и т. д. Вместо оксидазы, использующейся в аэробных условиях, в отсутствие кислорода бактерии могут использовать редуктазы, восстанавливающие различные конечные акцепторы электрона: фумаратредуктазу, нитрат- и нитритредуктазу и т. д.

См. также

Примечания