NP-полная задача

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Atr2006 (обсуждение | вклад) в 04:40, 1 января 2016 (NP-полнота в сильном смысле). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

NP-полная задача — в теории алгоритмов задача из класса NP, к которой можно свести любую другую задачу из этого класса за полиномиальное время (то есть при помощи операций, число которых не превышает некоторого полинома в зависимости от размера исходных данных). Таким образом, NP-полные задачи образуют в некотором смысле подмножество «типовых» задач в классе NP: если для какой-то из них найден «полиномиально быстрый» алгоритм решения, то и любая другая задача из класса NP может быть решена так же «быстро».

Формальное определение

Алфавитом называется всякое конечное множество символов (например, {} или {}). Множество всех возможных слов (конечных строк, составленных из символов этого алфавита) над некоторым алфавитом обозначается . Языком над алфавитом называется всякое подмножество множества , то есть .

Задачей распознавания для языка называется определение того, принадлежит ли данное слово языку .

Пусть и  — два языка над алфавитом . Язык называется сводимым (по Карпу) к языку , если существует функция, , вычислимая за полиномиальное время, обладающая следующим свойством:

  • тогда и только тогда, когда . Сводимость по Карпу обозначается как или .

Язык называется NP-трудным, если любой язык из класса NP сводится к нему. Язык называют NP-полным, если он NP-труден, и при этом сам лежит в классе NP.

Таким образом, если будет найден алгоритм, решающий некоторую (любую) NP-полную задачу за полиномиальное время, то все NP-задачи окажутся в классе P, то есть будут решаться за полиномиальное время.

NP-полнота в сильном смысле

Задача называется NP-полной в сильном смысле, если у неё существует подзадача, которая:

  1. не является задачей с числовыми параметрами (то есть максимальное значение величин, встречающихся в этой задаче, ограничено сверху полиномом от длины входа),
  2. принадлежит классу NP,
  3. является NP-полной.

Класс таких задач называется NPCS. Если гипотеза P ≠ NP верна, то для NPCS-задачи не существует псевдополиномиального алгоритма.

Гипотеза P ≠ NP

Вопрос о совпадении классов P и NP уже более 30 лет является открытой проблемой. Научное сообщество склоняется к отрицательному ответу на этот вопрос[1] — в этом случае решать NP-полные задачи за полиномиальное время не удастся.

Примеры NP-полных задач

См. также

Примечания

  1. William I. Gasarch (2002). "The P=?NP poll" (PDF). SIGACT News. 33 (2): 34—47. doi:10.1145/1052796.1052804.
  2. Erik D. Demaine, Susan Hohenberger, David Liben-Nowell. Tetris is Hard, Even to Approximate (англ.). preprint.

Литература

  • Томас Х. Кормен и др. Глава 34. NP-полнота // Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS. — 2-е изд. — М.: «Вильямс», 2006. — С. 1296. — ISBN 0-07-013151-1.

Ссылки