Ретроспленальная кора
Ретроспленальная кора | |
---|---|
| |
Медиафайлы на Викискладе |
Ретроспленальная кора — это области коры головного мозга, включающая в себя 26, 29 и 30 поля по Бродману[1]. Название область получила из-за своего анатомического расположения у приматов — сразу за валиком мозолистого тела, хотя у грызунов она расположена ближе к поверхности мозга и имеет бо́льшие относительные размеры. Её функция на данный момент не до конца понятна, но её расположение вблизи зрительных областей, а также гиппокампальной системе памяти и ориентации в пространстве говорит о том, что она может играть роль в передаче информации между восприятием и памятью[2].
Анатомия
Существует большое количество вариаций в размерах ретроспленальной коры у различных видов. У человека она занимает примерно 0,3 % всей поверхности коры, тогда как у кроликов — как минимум 10 %, а у крыс простирается более чем на половину мозга дорсо-вентрально, что делает её одной из крупнейших областей коры[2]. На основе микроклеточной структуры ретроспленальная кора делится на агранулярную (30 поле) и гранулярную (29 поле) части[1].
Ретроспленальная кора имеет мощные реципрокные связи со зрительной корой, с передними ядрами таламуса и гиппокампом.
Нейрофизиология
Нейрофизиологические исследования ретроспленальной коры в основной своей массе проводились на крысах. У грызунов, около 8,5 % нейронов ретроспленальной коры являются нейронами направления головы в то время как активность остальных нейронов коррелирует с такими параметрами как скорость бега[3][4].
Функция
фМРТ исследования на людях указывают на участие ретроспленальной коры в широком диапазоне когнитивных функций, в том числе эпизодической памяти, навигации, воображении будущих событий и обработке обстановки в целом[2][5]. Исследования на грызунах говорят о важной роли этого региона мозга для формирования и хранения пространственной информации[6][7][8]. Ретроспленальная кора особенно отзывчива на постоянные, неподвижные ориентиры в окружающем пространстве[9][10], а также вовлечена в их использование, при решении пространственных задач[11][12].
Существует предположение, что ретроспленальная кора осуществляет взаимодействие эгоцентрической и аллоцентрической пространственной информации, поскольку анатомически она расположена между гиппокампом (где расположены клетки места, осуществляющие сбор аллоцентрической пространственной информации) и теменной долей коры (которая интегрирует эгоцентрическую сенсорную информацию)[13].
Обследование участников международных чемпионатов по запоминанию при помощи фМРТ показало, что у них активность ретроспленальной коры больше, по сравнению с контрольной группой в процессе запоминания. Предполагается, что это связано с использованием участниками чемпионатов мнемонических техник основных на пространственном воображении, например метод Локи[14].
При извлечении фактов из автобиографической памяти у людей наблюдается взаимодействие ретроспленальной коры и медиальной височной долей мозга на частоте тета-ритма[15].
Патология
Ретроспленальная кора - один из немногих участков мозга повреждение которых вызывает как антероградную, так и ретроградную амнезию[16]. У людей с повреждением ретроспленальной коры наблюдается одна из форм топографической дезориентации, при которой они могут распознавать и идентифицировать ориентиры в окружающем пространстве, но не в состоянии использовать их для ориентирования[2].
Ретроспленальная кора является одним из первых регионов мозга в которых происходят патологические изменения при болезни Альцгеймера и её продромальной фазе - умеренном когнитивном расстройстве[17][18].
Галерея
Примечания
- ↑ 1 2 Vogt B. A. Retrosplenial cortex in the rhesus monkey: A cytoarchitectonic and golgi study (англ.) // The Journal of Comparative Neurology. — 1976. — Vol. 169, no. 1. — P. 63—97. — doi:10.1002/cne.901690105.
- ↑ 1 2 3 4 Vann S. D., Aggleton J. P., Maguire E. A. What does the retrosplenial cortex do? (англ.) // Nature Reviews Neuroscience. — 2009. — Vol. 10, no. 11. — P. 792—802. — doi:10.1038/nrn2733.
- ↑ Chen L. L. et al. Head-direction cells in the rat posterior cortex (англ.) // Experimental Brain Research. — 1994-09-01. — Vol. 101, iss. 1. — P. 8—23. — ISSN 0014-4819. — doi:10.1007/BF00243212.
- ↑ Cho J., Sharp P. E. Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. // Behavioral Neuroscience. — 2001. — Т. 115, № 1. — С. 3—25. — doi:10.1037/0735-7044.115.1.3.
- ↑ Spreng R. N., Mar R. A., Kim A. S. N. The Common Neural Basis of Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default Mode: A Quantitative Meta-analysis (англ.) // Journal of Cognitive Neuroscience. — 2008. — Vol. 21, no. 3. — P. 489–510. — ISSN 0898-929X. — doi:10.1162/jocn.2008.21029.
- ↑ Pothuizen H. H. J. et al. Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats (англ.) // European Journal of Neuroscience. — 2009-09-01. — Vol. 30, no. 5. — P. 877–888. — ISSN 1460-9568. — doi:10.1111/j.1460-9568.2009.06881.x.
- ↑ Czajkowski R. et al. Encoding and storage of spatial information in the retrosplenial cortex (англ.) // Proceedings of the National Academy of Sciences. — 2014-06-10. — Vol. 111, no. 23. — P. 8661—8666. — ISSN 0027-8424. — doi:10.1073/pnas.1313222111.
- ↑ Yoder R. M., Clark B. J., Taube J. S. Origins of landmark encoding in the brain (англ.) // Trends in Neurosciences. — 2011-11-01. — Vol. 34, no. 11. — P. 561—571. — ISSN 0166-2236. — doi:10.1016/j.tins.2011.08.004.
- ↑ Auger S. D., Mullally S. L., Maguire E. A. Retrosplenial Cortex Codes for Permanent Landmarks (англ.) // PLoS ONE. — 2012-08-17. — Vol. 7, no. 8. — P. e43620. — doi:10.1371/journal.pone.0043620.
- ↑ Auger S. D., Maguire E. A. Assessing the mechanism of response in the retrosplenial cortex of good and poor navigators (англ.) // Cortex. — 2013-11-01. — Vol. 49, no. 10. — P. 2904–2913. — doi:10.1016/j.cortex.2013.08.002.
- ↑ Committeri G. et al. Reference Frames for Spatial Cognition: Different Brain Areas are Involved in Viewer-, Object-, and Landmark-Centered Judgments About Object Location (англ.) // Journal of Cognitive Neuroscience. — 2004-11-01. — Vol. 16, no. 9. — P. 1517–1535. — ISSN 0898-929X. — doi:10.1162/0898929042568550.
- ↑ Galati G. et al. Multiple reference frames used by the human brain for spatial perception and memory (англ.) // Experimental Brain Research. — 2010-02-26. — Vol. 206, no. 2. — P. 109—120. — ISSN 0014-4819. — doi:10.1007/s00221-010-2168-8.
- ↑ Byrne P., Becker S., Burgess N. Remembering the past and imagining the future: A neural model of spatial memory and imagery. (англ.) // Psychological Review. — Vol. 114, no. 2. — P. 340—375. — doi:10.1037/0033-295x.114.2.340.
- ↑ Maguire E. A. et al. Routes to remembering: the brains behind superior memory (англ.) // Nature Neuroscience. — Vol. 6, no. 1. — P. 90—95. — doi:10.1038/nn988.
- ↑ Foster B. L. et al. Human Retrosplenial Cortex Displays Transient Theta Phase Locking with Medial Temporal Cortex Prior to Activation during Autobiographical Memory Retrieval (англ.) // The Journal of Neuroscience. — 2013-06-19. — Vol. 33, no. 25. — P. 10439—10446. — ISSN 0270-6474. — doi:10.1523/JNEUROSCI.0513-13.2013.
- ↑ Valenstein E. et al. Retrosplenial Amnesia (англ.) // Brain. — 1987-12-01. — Vol. 110, no. 6. — P. 1631—1646. — ISSN 0006-8950. — doi:10.1093/brain/110.6.1631.
- ↑ Pengas G. et al. Focal posterior cingulate atrophy in incipient Alzheimer's disease (англ.) // Neurobiology of Aging. — Vol. 31, no. 1. — P. 25—33. — doi:10.1016/j.neurobiolaging.2008.03.014.
- ↑ Tan R. H. et al. Retrosplenial cortex (BA 29) volumes in behavioral variant frontotemporal dementia and Alzheimer’s disease (англ.) // Dementia and Geriatric Cognitive Disorders. — 2013. — Vol. 35, no. 3-4. — P. 177—182. — doi:10.1159/000346392.
На эту статью не ссылаются другие статьи Википедии. |