Решение треугольников
Решение треугольников (лат. solutio triangulorum) — исторический термин, означающий решение главной тригонометрической задачи: по известным данным о треугольнике (стороны, углы и т. д.) найти остальные его характеристики[1]. Существуют также обобщения этой задачи на случай, когда заданы другие элементы треугольника (например, медианы, биссектрисы, высоты, площади и т. д.). Треугольник может располагаться на плоскости или на сфере. Данная задача часто встречается в тригонометрических приложениях, например, в геодезии, астрономии, строительстве, навигации.
Решение плоских треугольников
У треугольника общего вида имеется 6 основных характеристик: 3 линейные (длины сторон ) и 3 угловые (). Сторону, противолежащую углу при вершине, принято обозначать той же буквой, что и эта вершина, но не заглавной, а строчной, см. рисунок. В классической задаче плоской тригонометрии заданы 3 из этих 6 характеристик, и нужно определить 3 остальные. Очевидно, если известны только 2 или 3 угла, однозначного решения не получится, так как любой треугольник, подобный данному, тоже будет решением, поэтому далее предполагается, что хотя бы одна из известных величин — линейная[2].
Алгоритм решения задачи зависит от того, какие именно характеристики треугольника считаются известными. Далее заданные величины символически обозначаются С (сторона) и У (угол). Поскольку сочетание УУУ исключено из рассмотрения, остаются 5 различных вариантов[3]:
- Три стороны (ССС);
- Две стороны и угол между ними (СУС);
- Две стороны и угол напротив одной из них (УСС);
- Сторона и два прилежащих угла (УСУ);
- Сторона, противолежащий угол и один из прилежащих (УУС).
Основные теоремы
Стандартным методом решения задачи является использование нескольких фундаментальных соотношений, выполняющихся для всех плоских треугольников[4]:
Из других иногда полезных на практике универсальных соотношений следует упомянуть теорему тангенсов, теорему котангенсов и формулы Мольвейде.
Замечания
- Для нахождения неизвестного угла надёжнее использовать теорему косинусов, а не синусов. Причина в том, что значение синуса угла при вершине треугольника не определяет однозначно самого угла[5]. Например, если то угол может быть как , так и , потому что синусы этих углов совпадают. Исключением является случай, когда заранее известно, что в данном треугольнике тупых углов быть не может — например, если треугольник прямоугольный. С косинусом такие проблемы не возникают, в интервале от до значение косинуса определяет угол однозначно.
- При построении треугольников важно помнить, что зеркальное отражение построенного треугольника тоже будет решением задачи. Например, три стороны однозначно определяют треугольник с точностью до отражения.
- Все треугольники подразумеваются невырожденными, то есть длина стороны не может быть нулевой, а величина угла — положительное число, меньшее, чем .
Три стороны
Пусть заданы длины всех трёх сторон . Условие разрешимости задачи — выполнение неравенства треугольника, то есть каждая длина должна быть меньше, чем сумма двух других длин:
Чтобы найти углы , надо воспользоваться теоремой косинусов[6]:
Третий угол сразу находится из правила, что сумма всех трёх углов должна быть равна 180°:
- .
Не рекомендуется второй угол находить по теореме синусов, потому что, как указано в вышеприведенном замечании 1, при этом существует опасность спутать тупой угол с острым. Этой опасности не возникнет, если первым определить, по теореме косинусов, наибольший угол, лежащий против наибольшей из сторон — два других угла точно являются острыми, и применение к ним теоремы синусов безопасно.
Ещё один метод вычисления углов по известным сторонам — использование теоремы котангенсов.
Две стороны и угол между ними
Пусть для определённости известны длины сторон и угол между ними. Этот вариант задачи всегда имеет единственное решение. Для определения длины стороны вновь применяется теорема косинусов[7]:
Фактически задача сведена к предыдущему случаю. Далее ещё раз применяется теорема косинусов для нахождения второго угла:
Третий угол находится из теоремы о сумме углов треугольника: .
Две стороны и угол напротив одной из них
В этом случае могут существовать два решения, единственное решение или вообще не быть решений. Пусть, например, известны две стороны и угол . Уравнение для угла находится из теоремы синусов[8]:
Для краткости обозначим (правая часть уравнения). При решении уравнения возможны 4 случая[9] [10].
- Задача не имеет решения (сторона «не достаёт» до линии BC) в двух случаях: если или если угол и при этом
- Если , существует единственное решение, причём треугольник прямоугольный,
- Если , то возможны 2 варианта.
- Если , то угол имеет два возможных значения: острый угол и тупой угол . На рисунке справа первому значению соответствуют точка , сторона и угол , а второму значению — точка , сторона и угол .
- Если , то (как известно, большей стороне треугольника соответствует больший противолежащий угол). Поскольку в треугольнике не может быть двух тупых углов, тупой угол для исключён, и решение единственно.
Третий угол определяется по формуле . Третью сторону можно найти по теореме синусов:
Сторона и два угла
Пусть задана сторона и два угла. Эта задача имеет единственное решение, если сумма двух углов меньше . В противном случае задача решения не имеет.
Вначале определяется третий угол. Например, если даны углы , то . Далее обе неизвестные стороны находятся по теореме синусов[11]:
Решение прямоугольных треугольников
В этом случае известен один из углов — он равен 90°. Необходимо знать ещё два элемента, хотя бы один из которых — сторона. Возможны следующие случаи:
- два катета;
- катет и гипотенуза;
- катет и прилежащий острый угол;
- катет и противолежащий острый угол;
- гипотенуза и острый угол.
Принято обозначать вершину прямого угла буквой C, а гипотенузу — . Катеты обозначаются и , а величины противолежащих им углов — α и β соответственно.
Расчётные формулы существенно упрощаются, так как вместо теорем синусов и косинусов можно использовать более простые соотношения — теорему Пифагора:
и определения основных тригонометрических функций:
Ясно также, что углы α и β — острые, так как их сумма равна . Поэтому любой из неизвестных углов однозначно определяется по любой из его тригонометрических функций (синусу, косинусу, тангенсу и др.) путём вычисления соответствующей обратной тригонометрической функции.
При корректной постановке задачи (если заданы гипотенуза и катет, то катет должен быть меньше гипотенузы; если задан один из двух непрямых углов, то он должен быть острый) решение всегда существует и единственно.
Два катета
Гипотенуза находится по теореме Пифагора:
Углы могут быть найдены с использованием функции арктангенса:
или же по только что найденной гипотенузе:
Катет и гипотенуза
Пусть известны катет и гипотенуза , тогда катет находится из теоремы Пифагора:
После этого углы определяются аналогично предыдущему случаю.
Катет и прилежащий острый угол
Пусть известны катет и прилежащий к нему угол α.
Гипотенуза находится из соотношения
Катет может быть найден либо по теореме Пифагора аналогично предыдущему случаю, либо из соотношения
Острый угол β может быть найден как
Катет и противолежащий острый угол
Пусть известны катет и противолежащий ему угол β.
Гипотенуза находится из соотношения
Катет и второй острый угол α могут быть найдены аналогично предыдущему случаю.
Гипотенуза и острый угол
Пусть известны гипотенуза и острый угол β.
Острый угол α может быть найден как
Катеты определяются из соотношений
Решение сферических треугольников
Сферический треугольник общего вида полностью определяется тремя из шести своих характеристик (3 стороны и 3 угла). Стороны сферического треугольника принято измерять не линейными единицами, а величиной опирающихся на них центральных углов.
Решение треугольников в сферической геометрии имеет ряд отличий от плоского случая. Например, сумма трёх углов зависит от треугольника; кроме того, на сфере не существует неравных подобных треугольников, и поэтому задача построения треугольника по трём углам имеет единственное решение. Но базовые соотношения, используемые для решения задачи, аналогичны плоскому случаю: сферические теоремы косинусов и сферическая теорема синусов.
Из других соотношений могут оказаться полезными формулы аналогии Непера[12] и формула половины стороны[13].
Три стороны
Если стороны заданы (в угловых единицах), то углы треугольника определяются из теоремы косинусов[14]:
- ,
- ,
- ,
Две стороны и угол между ними
Пусть заданы стороны и угол между ними. Сторона находится по теореме косинусов[14]:
Углы можно найти так же, как в предыдущем варианте, можно также использовать формулы аналогии Непера:
- ,
Две стороны и угол не между ними
Пусть заданы стороны и угол . Чтобы решение существовало, необходимо выполнение условия:
Угол получается из теоремы синусов:
Здесь, аналогично плоскому случаю, при получаются два решения: и .
Остальные величины можно найти из формул аналогии Непера[15]:
- ,
- .
Сторона и прилежащие углы
В этом варианте задана сторона и углы . Угол определяется по теореме косинусов[16]:
- ,
Две неизвестные стороны получаются из формул аналогии Непера:
или, используя вычисленный угол , по теореме косинусов:
Два угла и сторона не между ними
Пусть заданы сторона и углы . Сторона определяется по теореме синусов[17]:
- ,
Если угол для стороны острый и , существует второе решение:
Остальные величины определяются из формул аналогии Непера:
- ,
- ,
Три угла
Если заданы три угла, стороны находятся по теореме косинусов:
- ,
- ,
- .
Другой вариант: использование формулы половины угла[18].
Решение прямоугольных сферических треугольников
Изложенные алгоритмы значительно упрощаются, если известно, что один из углов треугольника (например, угол ) прямой. Прямоугольный сферический треугольник полностью определяется двумя элементами, остальные три находятся при помощи мнемонического правила Непера или из нижеприведенных соотношений[19].
Вариации и обобщения
Во многих практически важных задачах вместо сторон треугольника задаются другие его характеристики — например, длина медианы, высоты, биссектрисы, радиус вписанного или описанного круга и т. д. Аналогично вместо углов при вершинах треугольника в задаче могут фигурировать иные углы. Алгоритмы решения подобных задач чаще всего комбинируются из рассмотренных выше теорем тригонометрии.
Примеры:
- Задача Региомонтана: построить треугольник, если известны одна его сторона, длина опущенной на неё высоты и противолежащий угол[20].
- Задача Снеллиуса-Потенота.
- Задача Томаса Финке[21]: найти углы треугольника, если известна сумма двух углов и отношение противолежащих сторон .
- Задача Ньютона: решить треугольник, если известны одна его сторона, противолежащий угол и сумма двух других сторон.
Примеры практического применения
Триангуляция
Чтобы определить расстояние от берега до недоступной точки — например, до удалённого корабля,— нужно отметить на берегу две точки, расстояние между которыми известно, и измерить углы и между линией, соединяющей эти точки, и направлением на корабль. Из формул варианта «сторона и прилежащие к ней углы» можно найти длину высоты треугольника[22]:
Этот метод используется в каботажном судоходстве. Углы при этом оцениваются наблюдениями с корабля известных ориентиров на земле. Аналогичная схема используется в астрономии, чтобы определить расстояние до близкой звезды: измеряются углы наблюдения этой звезды с противоположных точек земной орбиты (то есть с интервалом в полгода) и по их разности (параллаксу) вычисляют искомое расстояние[22].
Другой пример: требуется измерить высоту горы или высокого здания. Известны углы наблюдения вершины из двух точек, расположенных на расстоянии . Из формул того же варианта, что и выше, получается[23]:
Расстояние между двумя точками на поверхности земного шара
Надо вычислить расстояние между двумя точками на земном шаре[24]:
- Точка A: широта долгота
- Точка B: широта долгота
Для сферического треугольника , где — северный полюс, известны следующие величины:
Это случай «две стороны и угол между ними». Из приведенных выше формул получается:
- ,
где — радиус Земли.
История
Зачатки тригонометрических знаний можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. Главным достижением этого периода стало соотношение, позже получившее имя теоремы Пифагора; Ван дер Варден считает, что вавилоняне открыли его между 2000 и 1786 годами до н. э.[25]
Общая постановка задачи решения треугольников (как плоских, так и сферических) появилась в древнегреческой геометрии[26]. Во второй книге «Начал» Евклида теорема 12 представляет собой словесный аналог теоремы косинусов для тупоугольных треугольников[27]:
В тупоугольных треугольниках квадрат на стороне, стягивающей тупой угол, больше [суммы] квадратов на сторонах, содержащих тупой угол, на дважды взятый прямоугольник, заключённый между одной из сторон при тупом угле, на которую падает перпендикуляр, и отсекаемым этим перпендикуляром снаружи отрезком при тупом угле.
Следующая за ней теорема 13 — вариант теоремы косинусов для остроугольных треугольников. Аналога теоремы синусов у греков не было, это важнейшее открытие было сделано гораздо позднее[28]: древнейшее из дошедших до нас доказательств теоремы синусов на плоскости описано в книге Насир ад-Дин Ат-Туси «Трактат о полном четырёхстороннике», написанной в XIII веке[29].
Первые тригонометрические таблицы составил, вероятно, Гиппарх в середине II века до н. э. для астрономических расчётов. Позднее астроном II века Клавдий Птолемей в «Альмагесте» дополнил результаты Гиппарха. Первая книга «Альмагеста» — самая значимая тригонометрическая работа всей античности. В частности, «Альмагест» содержит обширные тригонометрические таблицы хорд для острых и тупых углов, с шагом 30 угловых минут. В таблицах Птолемей приводит значение длин хорд с точностью до трех шестидесятиричных знаков[30]. Такая точность примерно соответствует пятизначной десятичной таблице синусов с шагом 15 угловых минут[1].
Птолемей явно не формулирует теорему синусов и косинусов для треугольников. Тем не менее он всегда справляется с задачей решения треугольников, разбивая треугольник на два прямоугольных[31].
Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию[32]. Решающим этапом в развитии теории стала монография «Сферика» в трёх книгах, которую написал Менелай Александрийский (около 100 года н. э.). В первой книге он изложил теоремы о сферических треугольниках, аналогичные теоремам Евклида о плоских треугольниках (см. I книгу «Начал»). По сообщению Паппа, Менелай первым ввёл понятие сферического треугольника как фигуры, образованной отрезками больших кругов[33]. Несколько десятилетий спустя Клавдий Птолемей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике.
В IV веке, после упадка античной науки, центр развития математики переместился в Индию. Сочинения индийских математиков (сиддханты) показывают, что их авторы были хорошо знакомы с трудами греческих астрономов и геометров[34]. Чистой геометрией индийцы интересовались мало, но их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен. В частности, индийцы первыми ввели в использование косинус[35]. Кроме того, индийцы знали формулы для кратных углов , для . В «Сурья-сиддханте» и в трудах Брахмагупты при решении задач фактически используется сферический вариант теоремы синусов, однако общая формулировка этой теоремы в Индии так и не появилась[36].
В VIII веке учёные стран Ближнего и Среднего Востока познакомились с трудами древнегреческих и индийских математиков и астрономов. Их астрономические трактаты, аналогичные индийским сиддхантам, назывались «зиджи»; типичный зидж представлял собой сборник астрономических и тригонометрических таблиц, снабжённый руководством по их использованию и (не всегда) изложением общей теории[37]. Сравнение зиджей периода VIII—XIII веков показывает быструю эволюцию тригонометрических знаний. Самые ранние из сохранившихся трудов принадлежат ал-Хорезми и ал-Марвази (IX век), которые рассмотрели, наряду с известными ещё индийцам синусом и косинусом, новые тригонометрические функции: тангенс, котангенс, секанс и косеканс[35].
Сабит ибн Курра (IX век) и ал-Баттани (X век) первыми открыли фундаментальную теорему синусов для частного случая прямоугольного сферического треугольника. Для произвольного сферического треугольника доказательство было найдено (разными способами и, вероятно, независимо друг от друга) Абу-л-Вафой, ал-Худжанди и ибн Ираком в конце X века[28]. В другом трактате ибн Ирака сформулирована и доказана теорема синусов для плоского треугольника[38]. Сферическая теорема косинусов в общем виде сформулирована в странах ислама не была, однако в трудах Сабита ибн Курры, ал-Баттани и других астрономов имеются эквивалентные ей утверждения[39].
Фундаментальное изложение тригонометрии как самостоятельной науки (как плоской, так и сферической) дал персидский математик и астроном Насир ад-Дин ат-Туси в 1260 году[40]. Его «Трактат о полном четырёхстороннике» содержит практические способы решения типичных задач, в том числе труднейших, решенных самим ат-Туси — например, построение сторон сферического треугольника по заданным трём углам[41]. Таким образом, к концу XIII века были открыты базовые теоремы, необходимые для эффективного решения треугольников.
В Европе развитие тригонометрической теории стало чрезвычайно важным в Новое время, в первую очередь для артиллерии, оптики и навигации при дальних морских путешествиях. В 1551 году появились 15-значные тригонометрические таблицы Ретика, ученика Коперника, с шагом 10"[42]. Потребность в сложных тригонометрических расчётах вызвала в начале XVII века открытие логарифмов, причём первые логарифмические таблицы Джона Непера содержали только логарифмы тригонометрических функций. Среди других открытий Непера — эффективный алгоритм решения сферических треугольников, получивший название «формулы аналогии Непера»[43]. Алгебраизация тригонометрии, начатая Франсуа Виетом, была завершена Леонардом Эйлером в XVIII веке, после чего алгоритмы решения треугольников приобрели современный вид.
См. также
- Площадь треугольника
- Сферическая тригонометрия
- Сферический треугольник
- Триангуляция
- Тригонометрические тождества
- Тригонометрические функции
- Формулы Мольвейде
Примечания
- ↑ 1 2 Выгодский М. Я., 1978, с. 266—268..
- ↑ Элементарная математика, 1976, с. 487..
- ↑ Solving Triangles . Maths is Fun. Дата обращения: 23 Jule 2012.
- ↑ Элементарная математика, 1976, с. 488..
- ↑ Степанов Н. Н., 1948, с. 133..
- ↑ Solving SSS Triangles . Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 сентября 2012 года.
- ↑ Solving SAS Triangles . Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
- ↑ Solving SSA Triangles . Maths is Fun. Дата обращения: 24 Jule 2012). Архивировано 30 сентября 2012 года.
- ↑ Выгодский М. Я., 1978, с. 294..
- ↑ Элементарная математика, 1976, с. 493—496..
- ↑ Solving ASA Triangles . Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
- ↑ Степанов Н. Н., 1948, с. 87—90..
- ↑ Степанов Н. Н., 1948, с. 102—104..
- ↑ 1 2 Энциклопедия элементарной математики, 1963, с. 545..
- ↑ Степанов Н. Н., 1948, с. 121—128..
- ↑ Степанов Н. Н., 1948, с. 115-121..
- ↑ Степанов Н. Н., 1948, с. 128—133..
- ↑ Степанов Н. Н., 1948, с. 104—108..
- ↑ Основные формулы физики, 1957, с. 14—15..
- ↑ Цейтен Г. Г., 1932, с. 223—224..
- ↑ Цейтен Г. Г., 1938, с. 126—127..
- ↑ 1 2 Геометрия: 7—9 классы, 2009, с. 260—261..
- ↑ Геометрия: 7—9 классы, 2009, с. 260..
- ↑ Степанов Н. Н., 1948, с. 136—137..
- ↑ van der Waerden, Bartel Leendert. Geometry and Algebra in Ancient Civilizations. — Springer, 1983. — ISBN 3-540-12159-5.
- ↑ Глейзер Г. И., 1982, с. 77..
- ↑ Глейзер Г. И., 1982, с. 94—95..
- ↑ 1 2 Матвиевская Г. П., 2012, с. 92—96..
- ↑ Berggren, J. Lennart. Mathematics in Medieval Islam // The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook. — Princeton University Press, 2007. — P. 518. — ISBN 9780691114859.
- ↑ История математики, том I, 1970, с. 143..
- ↑ Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — С. 366. — 456 с.
- ↑ Матвиевская Г. П., 2012, с. 25—27..
- ↑ Матвиевская Г. П., 2012, с. 33—36..
- ↑ Матвиевская Г. П., 2012, с. 40—44..
- ↑ 1 2 Сираждинов С. Х., Матвиевская Г. П., 1978, с. 79..
- ↑ История математики в Средние века, 1961, с. 160..
- ↑ Матвиевская Г. П., 2012, с. 51—55..
- ↑ Матвиевская Г. П., 2012, с. 111..
- ↑ Матвиевская Г. П., 2012, с. 96—98..
- ↑ Туси Насирэддин. Трактат о полном четырёхстороннике. Баку, Изд. АН АзССР, 1952.
- ↑ Рыбников К. А., 1960, с. 105..
- ↑ История математики, том I, 1970, с. 320..
- ↑ Степанов Н. Н. § 42. Формулы «аналогии Непера» // Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948. — С. 87—90. — 154 с.
Литература
- Теория и алгоритмы
- Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия: 7—9 классы. Учебник для общеобразовательных учреждений. — 19-е изд.. — М.: Просвещение, 2009. — 384 с. — ISBN 978-5-09-021136-9.
- Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
- Гельфанд И. М., Львовский С. М., Тоом А. Л. Тригонометрия, учебник для 10 класса. — М.: МЦНМО, 2002. — ISBN 5-94057-050-X.
- Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
- Мензел Д. (ред.). Основные формулы физики. Глава 1. Основные математические формулы. — М.: Изд. иностранной литературы, 1957. — 658 с.
- Основные понятия сферической геометрии и тригонометрии // Энциклопедия элементарной математики (в 5 томах). — М.: Физматгиз, 1963. — Т. 4. — С. 518-557. — 568 с.
- Степанов Н. Н. Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948.
- История
- Глейзер Г. И. История математики в школе. VII-VIII классы. Пособие для учителей. — М.: Просвещение, 1982. — С. 76-95. — 240 с.
- Глейзер Г. И. История математики в школе. IX-X классы. Пособие для учителей. — М.: Просвещение, 1983. — 352 с.
- История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.
- История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
- Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
- Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
- Матвиевская Г. П. Очерки истории тригонометрии: Древняя Греция. Средневековый Восток. Позднее Средневековье. — Изд. 2-е. — М.: Либроком, 2012. — 160 с. — (Физико-математическое наследие: математика (история математики)). — ISBN 978-5-397-02777-9.
- Рыбников К. А. История математики в двух томах. — М.: Изд. МГУ, 1960. — Т. I.
- Сираждинов С. Х., Матвиевская Г. П. Абу Райхан Беруни и его математические труды. Пособие для учащихся. — М.: Просвещение, 1978. — 95 с. — (Люди науки).
- Цейтен Г. Г. История математики в древности и в средние века. — М.—Л.: ГТТИ, 1932. — 230 с.
- Цейтен Г. Г. История математики в XVI и XVII веках. — М.—Л.: ОНТИ, 1938. — 456 с.
Эта статья входит в число хороших статей русскоязычного раздела Википедии. |