Тензорное исчисление
Эту страницу предлагается объединить со страницей Тензорный анализ. |
Тензорное исчисление — название раздела математики, изучающего тензоры и тензорные поля. Тензорное исчисление разделяется на тензорную алгебру, входящую в качестве основной части в полилинейную алгебру, и тензорный анализ, изучающий дифференциальные операторы на алгебре тензорных полей.
Тензорное исчисление является важной составной частью аппарата дифференциальной геометрии. В этой связи оно впервые систематически было развито Г. Риччи (G. Ricci) и Т. Леви-Чивитой (Т. Levi-Civita), его часто называли «исчислением Риччи».
Тензорное исчисление включает в себя такие разделы как векторный анализ и теория поля. Важными с точки зрения приложения являются теория инвариантов тензоров и теория тензорных функций.
Термин «тензор» ещё с середины XIX в. употребляется в механике при описании упругих деформаций тел. С начала XX в. аппарат тензорного исчисления систематически используется в релятивистской физике.
Тензорное исчисление является основным математическим «языком», с помощью которого формулируются фундаментальные законы таких наук, как механика сплошной среды, физика твердого тела, электродинамика, теория относительности и её современные продолжения.
Литература
- Димитриенко Ю. И. Тензорное исчисление. — М.: Высшая школа, 2001. — 575 с. — ISBN 5-06-004155-7.
- Коренев Г. В. Тензорное исчисление. — М.: Издательство МФТИ, 2000. — 240 с. — ISBN 5-89155-047-4.
- Сокольников И. С. Тензорный анализ. — М.: Наука, 1971. — 374 с.
- Схоутен Я. А. Тензорный анализ для физиков. — М.: Главная редакция физико-математической литературы изд-ва "Наука", 1965. — 456 с.
- Широков П. А. Тензорное исчисление. — М.—Л.: Гостехиздат, 1934. — 464 с.
Для улучшения этой статьи по математике желательно:
|