Биохимия
Биохи́мия (биологи́ческая, или физиологи́ческая хи́мия) — наука о химическом составе живых клеток и организмов и о лежащих в основе их жизнедеятельности химических процессах. Термин «биохимия» эпизодически употреблялся с середины XIX века, в классическом смысле он был предложен и введён в научную среду в 1903 году немецким химиком Карлом Нейбергом[1].
Биохимия — сравнительно молодая наука, которая находится на стыке биологии и химии[2].
Смежные дисциплины
Возникнув как наука о химии жизни в конце XIX века[2], чему предшествовало бурное развитие органической химии, биохимия отличается от органической химии тем, что исследует только те вещества и химические реакции, которые имеют место в живых организмах, прежде всего в живой клетке. Согласно этому определению, биохимия охватывает также многие области клеточной биологии и включает в себя молекулярную биологию[3]. После выделения последней в особую дисциплину, размежевание между биохимией и молекулярной биологией в основном сформировалось как методологическое и по предмету исследования. Молекулярные биологи преимущественно работают с нуклеиновыми кислотами, изучая их структуру и функции, в то время как биохимики сосредоточились на белках, в особенности на ферментах, катализирующих биохимические реакции. В последние годы термины «биохимия» и «молекулярная биология» часто используются как синонимы[4].
История развития
Как самостоятельная наука биохимия сформировалась примерно 100 лет назад, однако биохимические процессы люди использовали ещё в глубокой древности, не подозревая, разумеется, об их истинной сущности. В самые отдалённые времена уже была известна технология таких основанных на биохимических процессах производств, как хлебопечение, сыроварение, виноделие, выделка кож. Необходимость борьбы с болезнями заставляла задумываться о превращениях веществ в организме, искать объяснения целебным свойствам лекарственных растений. Использование растений в пищу, для изготовления красок и тканей также приводило к попыткам понять свойства веществ растительного происхождения. Древние мыслители рассуждали о том какую роль играют воздух и пища в жизнеобеспечении живых существ, о том что вызывает процесс брожения[5]
Арабский учёный и врач X века Авиценна в своей книге «Канон врачебной науки» подробно описал многие лекарственные вещества[6].
В XVII веке ван Гельмонт ввёл в обиход термин фермент для обозначения химического реагента участвующего в процессе пищеварения[7].
XVIII век ознаменовался трудами М. В. Ломоносова и А. Л. Лавуазье. На основе открытого ими закона сохранения массы веществ и накопленных к концу столетия экспериментальных данных, была объяснена сущность дыхания и исключительная роль в этом процессе кислорода[8].
Изучение химии жизни уже в 1827 г. привело к принятому до сих пор разделению биологических молекул на белки, жиры и углеводы. Автором этой классификации был английский химик и врач Уильям Праут[9]. В 1828 году немецкий химик Ф. Вёлер синтезировал мочевину: сначала — из циановой кислоты и аммиака (выпариванием раствора образующегося цианата аммония), а позже в этом же году — из углекислого газа и аммиака. Тем самым впервые было доказано, что химические вещества живого организма могут быть синтезированы искусственно, вне организма. Работы Вёлера нанесли первый удар по теориям представителей школы виталистов, предполагавших присутствие во всех органических соединениях некой «жизненной силы»[8]. Последующими мощными толчками в этом направлении химии явились лабораторные синтезы липидов (в 1854 году — П. Бертло, Франция) и углеводов из формальдегида (1861 — А. М. Бутлеров, Россия). Бутлеровым была также разработана теория строения органических соединений[10].
Новый толчок развитию биологической химии дали работы по изучению брожения, инициированные Луи Пастером. В 1897 г. Эдуард Бухнер доказал, что ферментация сахара может происходить в присутствии бесклеточного дрожжевого экстракта, и это процесс не столько биологический, сколько химический[4]. На рубеже XIX и XX веков работал немецкий биохимик Э. Фишер. Он сформулировал основные положения пептидной теории строения белков, установил структуру и свойства почти всех входящих в их состав аминокислот. Но лишь в 1926 г. Джеймсу Самнеру удалось получить первый чистый фермент, уреазу, и доказать, что фермент — это белок[11].
Биохимия стала первой биологической дисциплиной с развитым математическим аппаратом благодаря работам Холдейна, Михаэлиса, Ментен и других биохимиков, создавших ферментативную кинетику, основным законом которой является уравнение Михаэлиса-Ментен[12].
В 1928 г. Фредерик Гриффит впервые показал, что экстракт убитых нагреванием болезнетворных бактерий может передавать признак патогенности неопасным бактериям. Исследование трансформации бактерий в дальнейшем привело к очистке болезнетворного агента, которым, вопреки ожиданиям, оказался не белок, а нуклеиновая кислота. Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизма. В 1953 году американский биолог Дж. Уотсон и английский физик Ф. Крик опираясь на работы М. Уилкинса и Р. Франклин описали структуру ДНК — ключ к пониманию принципов передачи наследственной информации. Это открытие означало рождение нового направления науки — молекулярной биологии[13].
В 1958 Джордж Бидл и Эдуард Тейтем получили Нобелевскую премию за работу проведённую на грибах выводом которой стала гипотеза «один ген — один фермент»[14]. В 1988 Колин Питчфорк стал первым человеком, осуждённым за убийство на основе доказательств, полученных в результате ДНК-дактилоскопии доказательств, и первым преступником, пойманным в результате массового применения процедуры дактилоскопии[15]. Из последних вех в развитии биохимии следует отметить получение Эндрю Файером и Крейгом Мелло Нобелевской премии по физиологии и медицине за «открытие РНК-интерференции — эффекта гашения активности определённых генов»[16][17].
Методы
В основе биохимической методологии лежит фракционирование, анализ, изучение структуры и свойств отдельных компонентов живого вещества. Методы биохимии преимущественно формировались в XX веке; наиболее распространенными являются хроматография, изобретённая М. С. Цветом в 1903 г.[18], центрифугирование (Т. Сведберг, 1923 г., Нобелевская премия по химии 1926 г.) и электрофорез (А. Тизелиус, 1937 г., Нобелевская премия по химии 1948 г.)[19][20].
С конца ХХ в. в биохимии всё шире применяются методы молекулярной и клеточной биологии, в особенности искусственная экспрессия и нокаут генов в модельных клетках и целых организмах (см. генная инженерия, биотехнология). Определение структуры всей геномной ДНК человека выявило приблизительно столько же ранее неизвестных генов и их неизученных продуктов, сколько уже было известно к началу XXI века благодаря полувековым усилиям научного сообщества. Оказалось, что традиционный химический анализ и очистка ферментов из биомассы позволяют получить лишь те белки, которые в живом веществе присутствуют в сравнительно большом количестве. Не случайно основная масса ферментов была открыта биохимиками в середине XX века и к концу столетия распространилось убеждение, что все ферменты уже открыты. Данные геномики опровергли эти представления, но дальнейшее развитие биохимии требовало изменения методологии. Искусственая экспрессия ранее неизвестных генов предоставила биохимикам новый материал для исследования, часто недоступный традиционными методами. В результате возник новый подход к планированию биохимического исследования, который получил название обратная генетика или функциональная геномика[21]. В последние десятилетия большое развитие произошло в области компьютерного моделирования. Эта методика позволяет исследовать свойства биомолекул там, где невозможно (или очень затруднительно) провести прямой эксперимент. Методика основана на компьютерных программах, которые позволяют визуализировать структуру биомолекул, задать их предполагаемые свойства и наблюдать результирующие интеракции между молекулами, такие например как энзим — субстрат, энзим — коэнзим, энзим — ингибитор[20].
Необходимые химические элементы
Из 90 химических элементов, встречающихся в естественном состоянии в природе, для поддержания жизни необходимо чуть больше четверти. Большинство редких элементов не являются необходимыми для поддержания жизни (исключениями являются селен и иод). Большинством живых организмов не используются также два распространённых элемента, алюминий и титан. Списки необходимых для живых организмов элементов различаются на уровне высших таксонов. Всем животным необходим натрий, а некоторые растения обходятся без него. Растениям необходим бор и кремний, а животным - нет (или же необходим в ультрамикроскопических количествах). Всего шесть элементов (так называемые макронутриенты, или органогенные элементы) составляют до 99% от массы человеческого организма. Это углерод, водород, азот, кислород, кальций и фосфор. Кроме этих шести основных элементов, человеку необходимы малые или микроскопические количества ещё 19 элементов: натрий, хлор, калий, магний, сера, железо, фтор, цинк, кремний, медь, иод, бор, селен, никель, хром, марганец, молибден, кобальт[22] и, как показано в 2014 году, бром[23].
Биомолекулы
Четыре основных типа молекул, исследованием которых занимается биохимия, - это углеводы, липиды, белки и нуклеиновые кислоты, а также их гибриды, протеогликаны, гликопротеины, липопротеины и т. п. Многие биомолекулы являются полимерами. Биологические полимеры часто составляют комплексы, строение которых диктуется их биологической функцией[24].
Углеводы
Углеводы состоят из мономеров, называемых моносахариды, как например глюкоза (C6H12O6), фруктоза (C6H12O6)[25], и дезоксирибоза (C5H10O4). Во время синтеза молекулы дисахарида из двух молекул моносахаридов образуется молекула воды. Полисахариды служат для аккумуляции энергии (крахмал у растений, гликоген у животных) и как структурообразующие молекулы (например основным компонентом клеточных стенок растений является полисахарид целлюлоза, а хитин является структурным полисахаридом низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных)[26].
Липиды
Липиды (жиры), как правило составлены из молекулы глицерина, к которой сложно-эфирной связью крепятся от одной (моноглицериды) до трёх (триглицериды) жирных кислот. Жирные кислоты делятся на группы по длине углеводородной цепочки и по степени насыщенности (наличия и количества двойных связей в цепочке). Липиды служат у животных основными энергоёмкими молекулами. Кроме того у них есть различные функции, связанные с передачей клеточных сигналов и переноса липофильных молекул[27].
Белки
Белки как правило являются крупными молекулами — макробиополимерами. Их мономерами являются аминокислоты. Большинство организмов синтезируют белки из 20 разных типов аминокислот. Аминокислоты отличаются друг от друга так называемой R-группой, строение которой имеет большое значение в свёртывании белка в трёхмерную структуру. Аминокислоты образуют между собой пептидные связи выстраивая при этом цепочку — полипептид. Сравнение последовательности аминокислот в белках позволяет биохимикам определить степень гомологичности двух (или более) белков[28].
Функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров — полисахаридов и нуклеиновых кислот. Так, белки-ферменты катализируют протекание биохимических реакций и играют важную роль в обмене веществ. Некоторые белки выполняют структурную или механическую функцию, образуя цитоскелет, поддерживающий форму клеток. Также белки играют ключевую роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле. Многие белки, как ферменты так и структуральные белки создают комплексы с небелковыми биомолекулами. Комплексы с олигосахаридами называются (в зависимости от сравнительной доли белка и полисахарида в комплексе) гликопротеинами или протеогликанами. Комплексы с липидами называются липопротеинами[29].
Нуклеиновые кислоты
Нуклеиновая кислота — это комплекс макромолекул, состоящий из полинуклеотидных цепочек. Основная функция нуклеиновых кислот это хранение и кодирование генетической информации. Нуклеиновая кислота синтезируется из макроэргических мононуклеозидтрифосфатов (АТФ, ГТФ, ТТФ, ЦТФ, УТФ), один из которых аденозинтрифосфат (АТФ), является к тому же основной энергоёмкой молекулой всех живых организмов. Самыми распространёнными нуклеиновыми кислотами являются дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Нуклеиновые кислоты можно обнаружить во всех живых клетках от архей до эукариотов, а также в вирусах[30].
Название "нуклеиновые кислоты" было дано этой группе биополимеров из-за их основного местонахождения - в клеточном ядре. Мономеры этих молекул называются нуклеотиды. Нуклеотиды состоят из трёх компонентов: азотистого основания (пурина или пиримидина), моносахарида типа пентоза и фосфатной группы. ДНК и РНК различаются между собой типом пентозы (в ДНК это 2-дезоксирибоза, а в РНК это рибоза), а также возможным составом азотистых оснований (в то время как аденин, гуанин и цитозин присутствуют как в ДНК так и в РНК, тимин присутствует исключительно в ДНК, а урацил- исключительно в РНК)[31].
См. также
Примечания
- ↑ Vasudevan, 2013, p. 3.
- ↑ 1 2 Северин, 2003, с. 6.
- ↑ Р. Марри и др. Биохимия человека. Т.1. — М., 1993. — с. 10.
- ↑ 1 2 Березов, 1998, p. 17.
- ↑ Зубаиров Д. М. Вехи истории первой кафедры медицинской химии и физики в России (2007)
- ↑ Авиценна «Канон врачебной науки» [1]
- ↑ Harré, R. Great Scientific Experiments. — Oxford: Oxford University Press, 1983. — С. 33 – 35.
- ↑ 1 2 Березов, 1998, p. 16.
- ↑ William Prout
- ↑ Бутлеров А. О химическом строении веществ // Учёные записки Казанского университета (отд. физ.-мат. и мед. наук). Вып.1, отд.1. — 1862. — С. 1—11.
- ↑ The Nobel Prize in Chemistry 1946
- ↑ Chen, W.W.,Neipel, M., Sorger, P.K. (2010). "Classic and contemporary approaches to modeling biochemical reactions". Genes Dev. 24 (17): 1861—1875. doi:10.1101/gad.1945410. PMC 2932968. PMID 20810646.
{{cite journal}}
: Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка) - ↑ Crick F. H., Barnett L., Brenner S., Watts-Tobin R. J. (1961). "General nature of the genetic code for proteins" (PDF reprint). Nature. 192: 1227—32. doi:10.1038/1921227a0. PMID 13882203.
{{cite journal}}
: Неизвестный параметр|month=
игнорируется (справка)Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка) - ↑ Beadle G. W., Tatum E. L. (15 November 1941). "Genetic Control of Biochemical Reactions in Neurospora". PNAS. 27 (11): 499—506. doi:10.1073/pnas.27.11.499. PMC 1078370. PMID 16588492.[2]
- ↑ Butler, John M. Fundamentals of Forensic DNA Typing. — Academic Press, 2009. — P. 5. — ISBN 978-0-08-096176-7.
- ↑ Andrew Fire, Siqun Xu, Mary K. Montgomery, Steven A. Kostas, Samuel E. Driver und Craig C. Mello: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. In: Nature. Band 391, 1998, S. 806—811, PMID 9486653 PDF
- ↑ Sen, Chandan K.; Roy, Sashwati (2007). "miRNA: Licensed to kill the messenger". DNA Cell Biology. 26 (4): 193—194. doi:10.1089/dna.2006.0567. PMID 17465885.
{{cite journal}}
: Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка) - ↑ Березов, 1998, p. 26.
- ↑ Березов, 1998, p. 30-32.
- ↑ 1 2 Monique Laberge. Biochemistry. — USA: Infobase Publishing, 2008. — С. 4. — 112 с. — ISBN 97807910196932.
- ↑ Koonin E., Galperin M. Sequence — Evolution — Function.
- ↑ Ultratrace minerals. Authors: Nielsen, Forrest H. USDA, ARS Source: Modern nutrition in health and disease / editors, Maurice E. Shils ... et al.. Baltimore : Williams & Wilkins, c1999., p. 283-303. Issue Date: 1999 URI: [3]
- ↑ McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG (2014). "Bromine Is an Essential Trace Element for Assembly of Collagen IV Scaffolds in Tissue Development and Architecture". Cell. 157 (6): 1380—92. doi:10.1016/j.cell.2014.05.009. PMID 24906154.
{{cite journal}}
: Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка) - ↑ Monique Laberge. Biochemistry. — USA: Infobase Publishing, 2008. — С. 2. — 112 с. — ISBN 97807910196932.
- ↑ Whiting, G.C. Sugars // The Biochemistry of Fruits and their Products / A.C. Hulme. — Academic Press, 1970. — Vol. Volume 1. — P. 1–31.
- ↑ Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 1-е изд. — М.: Медицина, 1985. — С. 349—400. — 480 с. — (Учебная литература для студентов медицинских институтов). — 75 000 экз.
- ↑ Nelson D.L., Cox M.M. Lehninger Principles of Biochemistry. — 5th. — W. H. Freeman, 2008. — ISBN 978-0-7167-7108-1.
- ↑ Общая биология. Учебник для 9 — 10 классов средней школы. Под ред. Ю. И. Полянского. Изд. 17-е, перераб. — М.: Просвещение, 1987. — 288с.
- ↑ А. Н. Несмеянов, Н. А. Несмеянов. Начала органической химии. Книга вторая 221. Дата обращения: 26 декабря 2012. Архивировано 27 декабря 2012 года.
- ↑ Collier, 1998, pp. 96—99.
- ↑ Tropp, 2012, pp. 5–9.
Литература
- Марри Р. и др. Биохимия человека. — М., 1993.
- Введение в биохимическую экологию. — М.: Издательство Московского университета, 1986.
- Fromm, Herbert J.; Hargrove, Mark. Essentials of Biochemistry. — Springer, 2012. — ISBN 978-3-642-19623-2.
- Hunter, Graeme K. Vital Forces: The Discovery of the Molecular Basis of Life. — Academic Press, 2000. — ISBN 978-0-12-361811-5.
- Tropp, Burton E. Molecular Biology. — 4th. — Jones & Bartlett Learning, 2012. — ISBN 978-1-4496-0091-4.
- Vasudevan, D. M. et al. Textbook of Biochemistry for Medical Students. — 7th. — JP Medical Publishers, 2013. — ISBN 978-9-3509-0530-2.
- Collier, Leslie; Balows, Albert; Sussman, Max. Topley and Wilson’s Microbiology and Microbial Infections / Mahy, Brian and Collier, Leslie. Arnold. — ninth edition. — Virology, 1998. — Т. 1. — ISBN 0-340-66316-2.
- Северин, Е.С. Биохимия: Учеб. для вузов / Под ред. Е.С. Северина. — ГЭОТАР Медиа, 2003. — 779 с. — ISBN 5-9231-0254-4.
- Березов Т. Т., Коровкин Б. Ф. Биологическая химия: Учебник. — Медицина, 1998. — 704 с. — ISBN 5-225-02709-1.
Ссылки
- Ян Кольман, Клаус-Генрих Рем, Юрген Вирт Наглядная биохимия
- Berg et al. Biochemistry
- Lodish et al. Molecular Cell Biology
- Видеоматериалы по Биохимии
- Gerhard Michal, Dietmar Schombur. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology. — Hoboken, New Jersey: Wiley, 2012. — 401 с. — ISBN 9780470146842.
Эта статья входит в число добротных статей русскоязычного раздела Википедии. |