Кристаллографическая группа

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Tosha (обсуждение | вклад) в 02:04, 23 марта 2008. Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Кристаллографическая группадискретная группа движений -мерного евклидова пространства, имеющая ограниченную фундаментальную область. Две кристаллографические группы считаются эквивалентными, если они сопряжены в группе аффинных преобразований пространства евклидова пространства.

Происхождение теории кристаллографических групп связано с изучением симметрии орнаментов () и кристаллических структур (). Классификация всех плоских (двумерных) и пространственных (трёхмерных) кристаллографических групп была получена независимо Фёдоровым (1885), Шёнфлисом (Schönflies) (1891) и Барлоу (1894). С точностью до эквивалентности имеется 17 плоских и 219 пространственных кристаллографических групп; если же рассматривать пространственные группы с точностью до сопряжённости при помощи аффинных преобразований, сохраняющих ориентацию, то их будет 230.

Основные резульаты для многомерных кристаллографических групп были получены (шаблон не поддерживает такой синтаксис)[1] , он в частности доказал:

  1. Всякая -мерная кристаллографическая группа содержит линейно независимых параллельных переносов; группа линейных частей преобразований (т.е. образ в ) конечна.
  2. Две кристаллографические группы эквивалентны тогда и только тогда, когда они изоморфны как абстрактные группы.
  3. При любом имеется лишь конечное число -мерных кристаллографических групп, рассматриваемых с точностью до эквивалентности (что является решением 18-й проблемы Гильберта).

Теорема 1 позволяет дать следующее описание строения кристаллографических групп как абстрактных групп: Пусть — совокупность всех параллельных переносов, принадлежащих кристаллографической группе . Тогда нормальная подгруппа конечного индекса, изоморфная и совпадающая со своим централизатором в . Наличие такой нормальной подгруппы в абстрактной группе является и достаточным условием того, чтобы группа была изоморфна кристаллографической группе.

Группа линейных частей кристаллографической группы сохраняет решётку ; иными словами, в базисе решетки преобразования из записываются целочисленными матрицами.

Литература

  • Дж. Вольф, Пространства постоянной кривизны, Перевод с английского Москва «Наука» Главная редакция физико-математической литературы 1982
  1. Bieberbach L. Ober die Bewegungsgruppen der Euklidischen Raume I.—Math. Ann., 1911, 70, S. 297-336; 1912, 72, S. 400—412.