Ранг матрицы

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Atr2006 (обсуждение | вклад) в 21:16, 30 сентября 2016. Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Рангом системы строк (столбцов) матрицы с строк и столбцов называется максимальное число линейно независимых строк (столбцов). Несколько строк (столбцов) называются линейно независимыми, если ни одна из них не выражается линейно через другие. Ранг системы строк всегда равен рангу системы столбцов, и это число называется рангом матрицы.

Ранг матрицы — наивысший из порядков миноров этой матрицы, определитель которых отличен от нуля.

Ранг матрицы — Размерность образа линейного оператора, которому соответствует матрица.

Обычно ранг матрицы обозначается , или . Последний вариант свойственен для английского языка, в то время как первые два — для немецкого, французского и ряда других языков.

Определение

Пусть  — прямоугольная матрица.

Тогда по определению рангом матрицы является:

  • ноль, если  — нулевая матрица;
  • число , где  — минор матрицы порядка , а  — окаймляющий к нему минор порядка , если они существуют.

Теорема (о корректности определения рангов). Пусть все миноры матрицы порядка равны нулю (). Тогда , если они существуют. Шаблон:/рамка

Связанные определения

  • Ранг матрицы размера называют полным, если .
  • Базисный минор матрицы  — любой ненулевой минор матрицы порядка , где .
    • Строки и столбцы, на пересечении которых стоит базисный минор, называются базисными строками и столбцами. (Они определены неоднозначно в силу неоднозначности базисного минора.)

Свойства

  • Теорема (о базисном миноре): Пусть  — базисный минор матрицы , тогда:
    1. базисные строки и базисные столбцы линейно независимы;
    2. любая строка (столбец) матрицы есть линейная комбинация базисных строк (столбцов).
  • Следствия:
    • Если ранг матрицы равен , то любые строк или столбцов этой матрицы будут линейно зависимы.
    • Если  — квадратная матрица, и , то строки и столбцы этой матрицы линейно зависимы.
    • Пусть , тогда максимальное количество линейно независимых строк (столбцов) этой матрицы равно .
  • Теорема (об инвариантности ранга при элементарных преобразованиях): Введём обозначение для матриц, полученных друг из друга элементарными преобразованиями. Тогда справедливо утверждение: Если , то их ранги равны.
  • Теорема Кронекера — Капелли: Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы. В частности:
    • Количество главных переменных системы равно рангу системы.
    • Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.
  • Неравенство Сильвестра: Если A и B матрицы размеров m x n и n x k, то

Это частный случай следующего неравенства.

Линейное преобразование и ранг матрицы

Пусть  — матрица размера над полем (или ). Пусть  — линейное преобразование, соответствующее в стандартном базисе; это значит, что . Ранг матрицы  — это размерность области значений преобразования .

Методы

Существует несколько методов нахождения ранга матрицы:

  • Метод элементарных преобразований
Ранг матрицы равен числу ненулевых строк в матрице после приведения её к ступенчатой форме при помощи элементарных преобразований над строками матрицы.
  • Метод окаймляющих миноров
Пусть в матрице найден ненулевой минор -го порядка . Рассмотрим все миноры -го порядка, включающие в себя (окаймляющие) минор ; если все они равны нулю, то ранг матрицы равен . В противном случае среди окаймляющих миноров найдется ненулевой, и вся процедура повторяется.