Уровнемер
Уровнемер — прибор, предназначенный для определения уровня содержимого в открытых и закрытых сосудах, резервуарах, хранилищах и других ёмкостях. Под содержимым подразумеваются разнообразные виды жидкостей, в том числе и газообразующие, а также сыпучие и другие материалы. Уровнемеры также называют датчиками/сигнализаторами уровня, преобразователями уровня. Главное отличие уровнемера от сигнализатора уровня — это возможность измерять градации уровня, а не только его граничные значения.
В промышленном производстве в настоящее время существует разнообразный ряд технических средств, решающих задачу измерения и контроля уровня. Средства измерения уровня реализуют разнообразные методы, основанные на различных физических принципах. К наиболее распространённым методам измерения уровня, которые позволяют преобразовать значение уровня в электрическую величину и передавать её значение в системы АСУ ТП, относятся:
- контактные методы:
- бесконтактные методы:
С развитием измерительной техники каждый метод приобретает характерный набор своих технических реализаций, которые в каждом конкретном случае имеют как преимущества, так и недостатки.
Бесконтактный (радарный) уровнемер
Непрерывное измерение уровня по радарному принципу основано на теории распространения электромагнитных волн британского физика Джеймса Максвелла, созданной им в 1865 году. Он предположил, что силовые линии меняющегося магнитного поля окружены кругообразными силовыми линиями электрического поля, даже при отсутствии электрических проводников. Вдохновлённый этой теорией, немецкий физик Кристиан Гюльсмайер в 1904 году в Дюссельдорфе разработал телемобилоскоп и запатентовал этот первый радарный прибор. Благодаря этому устройству он стал известен как изобретатель первого радара.
Принцип измерения
Излучаемый сигнал отражается от поверхности измеряемой среды и с небольшой временной задержкой t принимается антенной. Используемый радарный принцип называется FMCW (непрерывное частотно-модулированное излучение). При радарном FMCW измерении используется высокочастотный сигнал, частота излучения которого во время измерения линейно возрастает (так называемое качание частоты). Излучаемый сигнал отражается от поверхности измеряемой среды и принимается с небольшой временной задержкой t. Время задержки рассчитывается по формуле t=2d/c, где d - это дистанция до поверхности продукта, а c - это скорость света в газе над поверхностью среды. На основании частоты посланных и принятых сигналов рассчитывается разница Δf, используемая при дальнейшей обработке сигнала. Разница частот прямо пропорциональна дистанции. Большая разница между частотами соответствует большей дистанции, и наоборот. Разница частот Δf трансформируется в частотный спектр с помощью быстрого преобразования Фурье (БПФ), на основании которого затем рассчитывается дистанция. Уровень рассчитывается как разница между высотой резервуара и полученной дистанцией.
Ультразвуковой уровнемер
Ультразвуковые уровнемеры используются для непрерывного измерения уровня жидкостей и сыпучих веществ практически во всех отраслях промышленности.
Принцип измерения
Короткие ультразвуковые импульсы в диапазоне от 18 до 70 кГц излучаются сенсором в направлении измеряемой среды, отражаются от её поверхности и снова улавливаются сенсором. Импульсы распространяются со скоростью звука, при этом время между моментом излучения и приёма сигнала зависит от уровня заполнения резервуара. Новейшая микропроцессорная технология и зарекомендовавшее себя программное обеспечение гарантируют надёжное обнаружение эхо-сигнала уровня даже при наличии ложных эхо-сигналов, отражённых от внутренних конструкций, и высокоточное вычисление дистанции до поверхности измеряемой среды. Чтобы компенсировать влияние времени прохождения акустического сигнала, встроенный температурный датчик определяет температуру в резервуаре.
Благодаря простому вводу габаритных размеров ёмкости и измеренной дистанции рассчитывается сигнал, пропорциональный уровню. Таким образом, отсутствует необходимость в заполнении ёмкости для выполнения точной настройки.
Метод непрерывного ультразвукового измерения уровня доказал свою эффективность. Ультразвуковые уровнемеры подходят для измерения дождевой и сточной воды, для жидкостей с низким или высоким уровнем загрязнения, с содержанием твёрдых частиц или шлама. Само собой разумеется, что при работе с сыпучими веществами к измерительному прибору предъявляются другие требования, чем при работе с жидкостями. Ведь поверхность измеряемого продукта при этом неровная и часто представляет собой насыпной конус. Многие вещества вызывают интенсивное образование пыли. Кроме того, многие резервуары для сыпучих веществ намного выше, чем ёмкости для жидкостей.
Рефлекс-радарный уровнемер
Принцип измерения
Принцип измерения рефлекс-радарного TDR уровнемера основан на проверенной технологии рефлектометрии интервала времени (TDR). При данном способе измерений электромагнитные импульсы малой мощности посылаются по стержневому или кабельному волноводу каждую наносекунду. Эти импульсы движутся со скоростью света. Достигнув поверхности измеряемого продукта, импульсы отражаются, а интенсивность отражения зависит от диэлектрической постоянной продукта εr (например, от поверхности воды отражается до 80% от уровня первоначального импульса). Прибор измеряет время между моментами излучения сигнала и получения отражённого сигнала: Половина этого времени соответствует расстоянию между точкой отсчёта в приборе (уплотнительная поверхность фланца) и поверхностью измеряемой среды. Это временное значение преобразуется в выходной токовый сигнал 4...20 мА и/или дискретный сигнал. Пыль, пена, испарения, неспокойная поверхность, кипящие жидкости, изменения давления, температуры и плотности не влияют на работу прибора.
Поплавковый уровнемер
Принцип измерения
Магнитный байпасный индикатор уровня функционирует по принципу сообщающихся сосудов. Измерительная камера устанавливается вплотную к ёмкости таким образом, чтобы условия в измерительной камере и в ёмкости были одинаковыми. Поплавок оснащён cистемой постоянных магнитов, предназначенных для передачи измеренных значений на локальный индикатор. Система магнитов поплавка либо активирует магнитные пластины (флажковый индикатор) в соответствии с уровнем жидкости, либо перемещает магнитный указатель в индикаторе в зависимости от выбранного способа индикации. Индикация уровня осуществляется посредством изменения положения группы вертикально расположенных магнитных флажков или исходя из положения магнитного указателя.
Буйковый уровнемер
Принцип измерения
Индикатор уровня работает по принципу вытеснения. Согласно этому принципу длина тела, погружённого в жидкость, соответствует диапазону измерения уровня. Подвешенный на измерительной пружине стержень-вытеснитель погружён в жидкость, и на него в соответствии с законом Архимеда воздействует выталкивающая сила, пропорциональная массе вытесненной телом жидкости. Изменению выталкивающей силы точно соответствует изменение длины пружины, что позволяет измерить уровень. Изменение длины пружины преобразуется при помощи магнитной системы в изменение уровня и передаётся на индикатор.
Расчетная схема
Буек закреплен на упругой подвеске с жесткостью с, действующей на буек с определенным усилием. Увеличивая уровень на Н от нулевого положения 00, увеличиваем выталкивающую силу, что вызывает подъем буйка на х, причем при его подъеме увеличивается осадка, т.е. х < h. При этом изменяется усилие, с которым подвеска действует на буек, причем изменение равно изменению выталкивающей силы, вызванной увеличением осадки буйка на (h - х): хс = (h — х)ρ жgF - (h- х)ρ гgF, где с — жесткость подвески; ρ ж, ρ г — плотность жидкости и газа; F— площадь поперечного сечения буйка. Отсюда легко получить выражение для статической характеристики буйкового уровнемера: x = h/(1 + с(ρ ж - ρ г)gF). Таким образом, статическая характеристика буйкового уровнемера линейна, причем чувствительность его может быть изменена за счет увеличения F или уменьшения жесткости подвески с. При большой жесткости подвески буек перемещаться не будет, однако при изменении уровня изменится усилие, с которым он действует на подвеску. В этом случае при увеличении уровня на h изменение усилия равно hF(ρ ж - ρ г)g. Такой принцип используется, например, в буйковых уровнемерах типов Сапфир-22ДУ, УБ-Э, ПИУП (ранее УБ-П). Последние уровнемеры снабжены преобразователями с силовой компенсацией (УБ-Э) с унифицированным токовым выходным сигналом, УБ-П и ПИУП с унифицированным пневматическим выходным сигналом).