Обсуждение:Наибольший общий делитель
Эта статья тематически связана с вики-проектом «Математика», цель которого — создание и улучшение статей по темам, связанным с математикой. Вы можете её отредактировать, а также присоединиться к проекту, принять участие в его обсуждении и поработать над требуемыми статьями. |
НОК
[править код]Я добавил Наименьшее общее кратное, это нужно сделать хотя бы на время, пока статья не примет нормальный вид, потом можно будет легко их разрезать (если потребуется). Tosha 02:29, 12 Окт 2004 (UTC)
- Странно, что с НОК стоит редирект на НОД.--Nxx 08:33, 20 марта 2006 (UTC)
Обозначения
[править код]Есть некоторые ошибки. На НОД делятся числа m и n, а вот НОК делится на эти числа (делимое/делитель=частное)
В 6 классе учат НОК и НОД
ээ, может я чего-то недопонимаю, НО: 1) Делимое-это то число, которое делят 2) Делитель-это то, на что делят; а частное это результат 3) Почему тогда d | m и d | n? может наоборот? WhatTheFunny 17:27, 18 июня 2009 (UTC)WhatTheFunny
- Наверно, Вы путаете обозначения и . Первое означает, что n делится на d, второе — наоборот, d делится на n. --Мышонок 20:42, 18 июня 2009 (UTC)
Универсальная формула нахождения НОД
[править код]Универсальная формула нахождения НОД, какова она? Евклидова эффективна для двух членов, а если их несколько? 174.123.156.216 14:41, 2 сентября 2010 (UTC)
- В статье описан алгоритм, посмотрите. Другой вариант: обобщить алгоритм Евклида, на каждом шаге заменяя поочерёдно все числа, кроме наименьшего, их остатками от деления на наименьшее. Алгоритм завершается, когда все числа станут равны. LGB 15:53, 2 сентября 2010 (UTC)
Натуральные числа
[править код]Математический энциклопедический словарь утверждает, что НОД определяется для натуральных чисел, а не для целых, так как есть неоднозначности если одно из исходных чисел равно нулю. — Roman Dawydkin 07:36, 10 декабря 2013 (UTC)
- Математическая энциклопедия, БСЭ и другие АИ предпочли дать более широкое определение — для всех целых чисел. В данной статье чётко оговорено, что НОД(0, 0) не определён, но никаких крупных неприятностей этот печальный факт не влечёт. НОД(0, n) = n, здесь тоже нет проблем. Могу вкратце пояснить, почему определение БСЭ лучше. Дело в том, что в рамках только натуральных чисел, без нуля, невозможно построить нормальную теорию делимости — хотя бы потому, что придётся различать деление с остатком и деление нацело. Из-за этого будут сложности с алгоритмом Евклида и другими теоремами арифметики, тесно связанными с НОД. Расширение базового множества до целых чисел все проблемы и неудобства снимает. LGB 10:46, 10 декабря 2013 (UTC)
А зачем нужен НОД?
[править код]С уравнениями, производными, интегралами, даже неравенствами всё понятно. А зачем нужен НОД? Где он применяется?