Типизированное лямбда-исчисление

Материал из Википедии — свободной энциклопедии
Это текущая версия страницы, сохранённая MrTsepa (обсуждение | вклад) в 09:59, 13 июня 2018 (викификация). Вы просматриваете постоянную ссылку на эту версию.
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Типизированное лямбда-исчисление — это версия лямбда-исчисления, в которой лямбда-термам приписываются специальные синтаксические метки, называемые типами. Допустимы различные наборы правил конструирования и приписывания таких меток, они порождают различные системы типизации.

Типовые -исчисления являются фундаментальными примитивными языками программирования, которые обеспечивают основу типовым языкам функционального программирования — аппликативным языкам, — среди которых ML и Haskell, а также типовым императивным языкам программирования.

-исчисление с типами является языком декартово-замкнутой категории, что устанавливает прямую связь с такой моделью вычислений, как категориальная абстрактная машина. С одной точки зрения типовые -исчисления могут рассматриваться как специализации бестиповых -исчислений, а с другой — наоборот, типовые языки могут считаться более фундаментальными, из которых бестиповые получаются как частные случаи. Анализ этого явления дает теория вычислений Д. Скотта[1].

-исчисление с типами служит основой для разработки новых систем типизации для языков программирования, поскольку именно средствами типов и зависимостей между ними выражаются желаемые свойства программ.

В программировании самостоятельные вычислительные блоки (функции, процедуры, методы) языков программирования с сильной типизацией соответствуют типовым -выражениям.

Примечания

[править | править код]
  1. Scott D.S. The lattice of flow diagrams.- Lecture Notes in Mathematics, 188, Symposium on Semantics of Algorithmic Languages.- Berlin, Heidelberg, New York: Springer-Verlag, 1971, pp. 311—372.

Литература

[править | править код]
  • Friedman H. Equality between functionals. LogicColl. '73, pages 22-37, LNM 453, 1975.
  • Barendregt H. Lambda Calculi with Types, Handbook of Logic in Computer Science, Volume II, Oxford University Press.