Теорема Стокса
Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса.
Формулировка
[править | править код]Пусть на ориентируемом многообразии размерности заданы положительно ориентированное ограниченное -мерное подмногообразие () и дифференциальная форма степени класса . Тогда если граница подмногообразия положительно ориентирована, то
где обозначает внешний дифференциал формы .
Теорема распространяется на линейные комбинации подмногообразий одной размерности — так называемые цепи. В этом случае формула Стокса реализует двойственность между когомологиями де Рама и гомологиями циклов многообразия .
Частные случаи
[править | править код]Пусть дана кривая (одномерная цепь), ориентированно направленная от точки к точке , в многообразии произвольной размерности. Форма нулевой степени класса — это дифференцируемая функция . Тогда формула Стокса записывается в виде
Иногда называют теоремой Грина — Римана. Пусть — плоскость, а — некоторая её положительно ориентированная ограниченная область с кусочно-гладкой жордановой границей. Пусть форма первой степени, записанная в координатах и — это выражение Тогда для интеграла от этой формы по положительно ориентированной (против часовой стрелки) границе области верно
Определяя дифференциальную форму , найдём её внешний дифференциал:
Принимая во внимание, что и :
Отсюда используя теорему Стокса:
Независимое доказательство формулы Грина приведено в её основной статье.
Формула Кельвина — Стокса
[править | править код]Часто называется просто формулой Стокса. Пусть — кусочно-гладкая поверхность () в трёхмерном евклидовом пространстве (), — дифференцируемое векторное поле. Тогда циркуляция векторного поля вдоль замкнутого контура равна потоку ротора (вихря) поля через поверхность , ограниченную контуром:
или в координатной записи:
Часто в правой части пишут интеграл по замкнутому контуру.
Рассмотрим дифференциальную форму . Тогда, используя свойство дифференциала дифференциальной формы :
Отсюда, используя теорему Стокса:
Пусть . Тогда
Отсюда, используя формулу Грина, получаем
что по определению вихря и есть требуемая величина:
Пусть теперь — кусочно-гладкая гиперповерхность (), ограничивающая некоторую область в -мерном пространстве. Тогда интеграл дивергенции поля по области равен потоку поля через границу области :
В трёхмерном пространстве с координатами это эквивалентно записи:
или
Рассмотрим дифференциальную форму . Тогда, используя свойство дифференциала дифференциальной формы :
Отсюда, используя теорему Стокса:
Литература
[править | править код]- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления — Т. 3
- Арнольд В. И. Математические методы классической механики (djvu) (недоступная ссылка) (недоступная ссылка с 18-05-2013 [4240 дней] — история)
- Картан А. Дифференциальное исчисление. Дифференциальные формы. — М.: Мир, 1971.
См. также
[править | править код]- Векторный анализ
- Дифференциальная форма
- Формулы векторного анализа
- Дифференциальные геометрия и топология
Для улучшения этой статьи желательно: |