Теорема о неявной функции
Теорема о неявной функции — общее название для теорем, гарантирующих локальное существование и описывающих свойства неявной функции, то есть функции
- , ,
заданной уравнением
- , ,
где значение фиксировано.
Одномерный случай
[править | править код]Простейшая теорема о неявной функции состоит в следующем.
Если функция
- непрерывна в некоторой окрестности точки
- и
- при фиксированном функция строго монотонна по в данной окрестности,
тогда найдётся такой двумерный промежуток , являющийся окрестностью точки , и такая непрерывная функция , что для любой точки
Обычно дополнительно предполагается, что функция является непрерывно дифференцируемой в окрестности точки . В том случае строгая монотонность следует из условия , где обозначает частную производную по . Более того, в этом случае функция также является непрерывно дифференцируемой, и её производная может быть вычислена по формуле
- Пример
Рассмотрим функцию и соответствующее уравнение
- ,
которое задает на плоскости единичную окружность. Невозможно представить всю окружность в виде графика какой-либо функции . Действительно, каждому значению отвечает два разных значения . Однако можно представить часть окружности в виде графика. Например, график функции , определенной на отрезке , задаёт верхнюю половину окружности, а график функции задаёт её нижнюю половину.
Теорема о неявной функции имеет локальный характер и говорит о том, что в малой окрестности любой точки окружности, в которой выполнено условие часть окружности, находящаяся в этой окрестности, представима в виде графика гладкой функции. Это условие выполнено, например, в точке на рисунке. Существуют лишь две точки окружности ( и диаметрально противоположная ей точка), в которых условие нарушено. Очевидно, что в сколь угодно малой окрестности каждой из этих точек часть окружности не представима в виде графика какой-либо функции .
Многомерный случай
[править | править код]Пусть и — пространства с координатами и , соответственно. Рассмотрим отображение которое отображает некоторую окрестность точки в пространство .
Предположим, что отображение удовлетворяет следующим условиямː
- то есть является раз непрерывно дифференцируемым в
- якобиан отображения не равен нулю в точке то есть определитель матрицы не равен нулю.
Тогда существуют окрестности и точек и в пространствах и соответственно, причём , и отображение такие, что
для всех и . Отображение определено однозначно.
Естественным обобщением предыдущей теоремы на случай не гладких отображений является следующая теоремаː[1]
Предположим, что отображение удовлетворяет следующим условиямː
- является непрерывным в
- существуют окрестности и точек и в пространствах и соответственно, причём , такие, что для каждого фиксированного отображение является взаимно однозначным в .
Тогда существует такое непрерывное отображение , что
для всех и .
См. также
[править | править код]Литература
[править | править код]- Зорич В. А. Математический анализ, Любое издание
- Ильин В. А., Позняк Э. Г. Основы математического анализа, 3 изд., ч. 1, М., 1971
- Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа, 5 изд., М., 1981
- Люстерник Л. А., Соболев В. И. Элементы функционального анализа, 2 изд., М., 1965
- Никольский С. М. Курс математического анализа, 2 изд., т. 1—2, М., 1975
- Понтрягин Л. С. Обыкновенные дифференциальные уравнения, 4 изд., М., 1974 — § 33
- Шварц Л. Анализ, пер. с франц., т. 1, М., 1972
Примечания
[править | править код]- ↑ Jittorntrum, K. An implicit function theorem. J. Optim. Theory Appl. 25 (1978), no. 4, 575—577.