9-симплекс
Тип
Правильный девятимерный политоп
Символ Шлефли
{3,3,3,3,3,3,3,3}
8-мерных ячеек
10
7-мерных ячеек
45
6-мерных ячеек
120
5-мерных ячеек
210
4-мерных ячеек
252
Ячеек
210
Граней
120
Рёбер
45
Вершин
10
Вершинная фигура
8-симплекс
Двойственный политоп
Он же (самодвойственный )
9-симплекс — правильный самодвойственный девятимерный политоп . Имеет 10 вершин, 45 рёбер, 120 треугольных граней, 210 тетраэдральных ячеек, 252 пятиячейниковых 4-ячейки, 210 5-ячеек, имеющих форму 5-симплекса , 120 6-ячеек, имеющих форму 6-симплекса , 45 7-ячеек, имеющих форму 7-симплекса и 10 8-ячеек, имеющих форму 7-симплекса . Его двугранный угол равен arccos(1/9) , то есть примерно 83,62°.
Также называется декаиоттон или дека-9-топ , как имеющий 10 гиперграней 9-мерный политоп.
9-сипмлекс можно разместить в Декартовой системе координат следующим образом (длина ребра тела равна 2 и центр приходится на начало координат):
(
1
/
45
,
1
/
6
,
1
/
28
,
1
/
21
,
1
/
15
,
1
/
10
,
1
/
6
,
1
/
3
,
±
1
)
{\displaystyle \left({\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ {\sqrt {1/3}},\ \pm 1\right)}
(
1
/
45
,
1
/
6
,
1
/
28
,
1
/
21
,
1
/
15
,
1
/
10
,
1
/
6
,
−
2
1
/
3
,
0
)
{\displaystyle \left({\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ -2{\sqrt {1/3}},\ 0\right)}
(
1
/
45
,
1
/
6
,
1
/
28
,
1
/
21
,
1
/
15
,
1
/
10
,
−
3
/
2
,
0
,
0
)
{\displaystyle \left({\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ -{\sqrt {3/2}},\ 0,\ 0\right)}
(
1
/
45
,
1
/
6
,
1
/
28
,
1
/
21
,
1
/
15
,
−
2
2
/
5
,
0
,
0
,
0
)
{\displaystyle \left({\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ -2{\sqrt {2/5}},\ 0,\ 0,\ 0\right)}
(
1
/
45
,
1
/
6
,
1
/
28
,
1
/
21
,
−
5
/
3
,
0
,
0
,
0
,
0
)
{\displaystyle \left({\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ -{\sqrt {5/3}},\ 0,\ 0,\ 0,\ 0\right)}
(
1
/
45
,
1
/
6
,
1
/
28
,
−
12
/
7
,
0
,
0
,
0
,
0
,
0
)
{\displaystyle \left({\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ -{\sqrt {12/7}},\ 0,\ 0,\ 0,\ 0,\ 0\right)}
(
1
/
45
,
1
/
6
,
−
7
/
4
,
0
,
0
,
0
,
0
,
0
,
0
)
{\displaystyle \left({\sqrt {1/45}},\ 1/6,\ -{\sqrt {7/4}},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}
(
1
/
45
,
−
4
/
3
,
0
,
0
,
0
,
0
,
0
,
0
,
0
)
{\displaystyle \left({\sqrt {1/45}},\ -4/3,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}
(
−
3
1
/
5
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
)
{\displaystyle \left(-3{\sqrt {1/5}},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}