Элементарные преобразования матрицы
Элементарные преобразования матрицы |
---|
Элементарные преобразования матрицы — это такие преобразования матрицы, в результате которых сохраняется эквивалентность матриц. Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений, которую представляет эта матрица.
Элементарные преобразования используются в методе Гаусса для приведения матрицы к треугольному или ступенчатому виду.
Определение
[править | править код]Элементарными преобразованиями строк называют:
- перестановку местами любых двух строк матрицы;
- умножение любой строки матрицы на константу , , при этом определитель матрицы увеличивается в k раз;
- прибавление к любой строке матрицы другой строки, умноженной на некоторую константу.
В некоторых курсах линейной алгебры перестановка строк матрицы не выделяется в отдельное элементарное преобразование в силу того, что перестановку местами любых двух строк матрицы можно получить, используя умножение любой строки матрицы на константу , и прибавление к любой строке матрицы другой строки, умноженной на константу , .
Аналогично определяются элементарные преобразования столбцов.
Элементарные преобразования обратимы.
Обозначение указывает на то, что матрица может быть получена из путём элементарных преобразований (или наоборот).
Свойства
[править | править код]Эту статью необходимо исправить в соответствии с правилом Википедии об оформлении статей. |
Инвариантность ранга при элементарных преобразованиях
[править | править код]Теорема (об инвариантности ранга при элементарных преобразованиях). Если , то . |
Эквивалентность СЛАУ при элементарных преобразованиях
[править | править код]- Назовём элементарными преобразованиями над системой линейных алгебраических уравнений:
- перестановку уравнений;
- умножение уравнения на ненулевую константу;
- сложение одного уравнения с другим, умноженным на некоторую константу.
- То есть элементарные преобразования над её расширенной матрицей. Тогда справедливо следующее утверждение:
Теорема (об эквивалентности систем уравнений при элементарных преобразованиях). Система линейных алгебраических уравнений, полученная путём элементарных преобразований над исходной системой, эквивалентна ей. |
- Напомним, что две системы называются эквивалентными, если множества их решений совпадают.
Нахождение обратных матриц
[править | править код]Теорема (о нахождении обратной матрицы). Пусть определитель матрицы не равен нулю, пусть матрица определяется выражением . Тогда при элементарном преобразовании строк матрицы к единичной матрице в составе одновременно происходит преобразование к . |
Приведение матриц к ступенчатому виду
[править | править код]Просмотреть статью: Ступенчатый вид по строкам
- Введём понятие ступенчатых матриц:
- Матрица имеет ступенчатый вид, если:
- Все нулевые строки матрицы стоят последними;
- Для любой ненулевой строки матрицы (пусть для определённости её номер равен ) справедливо следующее: если — первый ненулевой элемент строки , то .
- Все нулевые строки матрицы стоят последними;
- Тогда справедливо следующее утверждение:
Теорема (о приведении матриц к ступенчатому виду). Любую матрицу путём элементарных преобразований только над строками можно привести к ступенчатому виду. |
Связанные определения
[править | править код]Элементарная матрица. Матрица А является элементарной, если умножение на неё произвольной матрицы В приводит к элементарным преобразованиям строк в матрице В.
Литература
[править | править код]- Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов. — 6-е изд., стер. — М.: ФИЗМАТЛИТ, 2004. — 280 с.