Кибернетический эксперимент
Кибернетический эксперимент состоит в том, что исходная система управления заменяется моделью, которая затем изучается. Принципиально моделирование состоит в создании системы управления, изоморфной или приближенно изоморфной данной, и в наблюдении за её функционированием [1].
Для реализации кибернетического эксперимента часто используются имитационное моделирование или компьютерное моделирование. При этом основным принципом является принцип „черного ящика“[2]. Кибернетический принцип "черного ящика" был предложен Н. Винером [3]. В отличие от аналитического подхода, при котором моделируется внутренняя структура системы, в методе "черного ящика" моделируется внешнее функционирование системы. Таким образом, с точки зрения экспериментатора структура системы (модели) спрятана в черном ящике, который имитирует только поведенческие особенности системы.
Информационные модели
[править | править код]В кибернетическом эксперименте исследуют информационные модели, которые различаются по типу запросов к ним:
- Моделирование отклика системы на внешнее воздействие
- Прогноз динамики изменения системы
- Оптимизация параметров системы по отношению к заданной функции ценности
- Адаптивное управление системой
В самом простейшем случае, при моделировании отклика системы, примем что X - вектор, компоненты которого некоторые количественные свойства системы, а X' - вектор внешних воздействий. Тогда отклик системы может быть описан вектор-функцией F: Y = F(X,X'), где Y - вектор отклика. Задачей кибернетического эксперимента (моделирования) является идентификация системы F, состоящая в нахождении алгоритма или системы правил в общей форме Z=G(X,X'). То есть нахождение ассоциаций каждой пары векторов (X,X') с вектором Z таким образом, что Z и Y близки. При этом информационной моделью системы F называется отношение Z=G(X,X'), воспроизводящее в указанном смысле функционирование системы F.
Искусственная нейронная сеть как вид информационной модели
[править | править код]Искусственные нейронные сети являются одним из подходов представления информационных моделей. Нейронная сеть может быть формально определена, как совокупность процессорных элементов (нейроны), обладающих локальным функционированием, и объединенных связями (синапсы). Сеть принимает некоторый входной сигнал из внешнего мира, и пропускает его сквозь себя с преобразованиями в каждом процессорном элементе. Таким образом, в процессе прохождения сигнала по связям сети происходит его обработка, результатом которой является определенный выходной сигнал. Таким образом нейронная сеть выполняет функциональное соответствие между входом и выходом, и может служить информационной моделью G системы F.
Примечания
[править | править код]- ↑ Ляпунов А.А., Яблонский С.В. Теоретические проблемы кибернетики // Проблемы кибернетики. Вып. 9. М.: Физматгиз, 1963. С. 5–22
- ↑ С.А. Терехов, Нейросетевые информационные модели сложных инженерных систем, Глава 4, Нейроинформатика . Дата обращения: 17 мая 2010. Архивировано из оригинала 14 июня 2006 года.
- ↑ Кибернетика, или Управление и связь в животном и машине. пер. с англ., 2-е изд., М, 1968.