Участник:Dpopov/Песочница

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

On cosmological timescales, certain events in the future of the universe can be predicted with a level of accuracy. The following times all assume that the universe is open.

меньше 10,000 лет вперёд

[править | править код]

от 10 000 до 1 000 000 лет вперёд

[править | править код]

1 million to one billion (106-109) years from now

[править | править код]

1 billion to 1 trillion (109-1012) years from now

[править | править код]
  • 1 billion years — point at which the Sun's increasing luminosity will render life on Earth's surface impossible.[25]
  • 3.5 billion years — Time until surface conditions on Earth are comparable to those on Venus today.[26]
  • 3.6 billion years — estimated time until Neptune's moon Triton will fall through the planet's Roche limit, potentially disintegrating into a new planetary ring system.[27]
  • 5.4 billion years — time before the Sun becomes a red giant.[28] During these times, it is possible that Saturn's moon Titan could achieve surface temperatures necessary to support life.[29][30]
  • 7 billion years — time until the potential collision between the Milky Way and Andromeda galaxies.[31][32]
  • 20 billion years — time until the end of the universe in the Big Rip scenario.[33] Experimental evidence currently suggests that this will not occur.[34]
  • 50 billion years — time until the Earth and the Moon become tidelocked, with each showing only one face to the other, assuming both survive the Sun's expansion.[35][36]
  • 100 billion years — time until the universe's expansion causes all evidence of the Big Bang to disappear beyond the cosmic light horizon, rendering cosmology impossible.[37]
  • >400 billion years — time by which all the Solar System's actinide elements will have decayed to less than 1% their current value, leaving bismuth as the heaviest traceable element.

1 trillion to 1 decillion (1012-1033) years from now

[править | править код]
  • 1012 (1 trillion) years — low estimate for the time until star formation ends in galaxies as galaxies are depleted of the gas clouds they need to form stars.[38], §IID.
  • 2×1012 (2 trillion) years — time until all galaxies outside the Local Supercluster are no longer detectable in any way, assuming that dark energy continues to make the Universe expand at an accelerating rate.[39]
  • 1013 (10 trillion) to 2×1013 (20 trillion) years — lifetime of the longest-lived stars, low-mass red dwarfs.[38] §IIA.
  • 1014 (100 trillion) years — high estimate for the time until star formation ends in galaxies.[38], §IID. This marks the transition from the Stelliferous Era to the Degenerate Era; once star formation ends and the least massive red dwarfs exhaust their fuel, the only stellar-mass objects remaining will be stellar remnants (white dwarfs, neutron stars and black holes.) Brown dwarfs will also remain.[38] §IIE.
  • 1015 (1 quadrillion) years — estimated time until planets are detached from their orbits. Whenever two objects pass close to each other, the orbits of their planets can be disrupted and the planets can be ejected from orbit around their parent objects. Planets with closer orbits take longer to be ejected in this manner on average because a passing object must make a closer pass to the planet's primary to eject the planet.[38], §IIIF, Table I.
  • 1019 to 1020 years — the estimated time until brown dwarfs and stellar remnants are ejected from galaxies. When two objects pass close enough to each other, they exchange orbital energy with lower-mass objects tending to gain energy. The lower-mass objects can gain enough energy in this manner through repeated encounters to be ejected from the galaxy. This process will cause the galaxy to eject the majority of its brown dwarfs and stellar remnants.[38], §IIIA;[40], pp. 85–87
  • 1020 years — estimated time until the Earth's orbit around the Sun decays via emission of gravitational radiation,[41] if the Earth is neither first engulfed by the red giant Sun a few billion years from now[42][43] nor ejected from its orbit by a stellar encounter before then.[41]
  • 1032 years — the smallest possible value for the proton half-life consistent with experiment.[44]

1 decillion to 1 millinillion (1033-103003) years from now

[править | править код]
  • 3×1034 years—the estimated time for all nucleons in the observable universe to decay, if the proton half-life takes its smallest possible value.[45]
  • 1036 years—the mean half-life of a proton according to some theories.
  • 1041 years—the largest possible value for the proton half-life, assuming that the Big Bang was inflationary and that the same process that makes protons decay made baryons predominate over anti-baryons in the early Universe.[38], §IVA.
  • 3×1043 years—the estimated time for all nucleons in the observable universe to decay, if the proton half-life takes the largest possible value, 1041 years, consistent with the conditions given above.[45] By this point, if protons do decay, the Black Hole Era, in which black holes are the only remaining celestial objects, will begin.[38]
  • 1065 years—Assuming that protons do not decay, estimated time for rigid objects like rocks to rearrange their atoms and molecules via quantum tunnelling. On this timescale all matter is liquid.[41]
  • 2×1066 years—the estimated time until a black hole with the mass of the Sun decays by the Hawking process.[46]
  • 1.7×10106 years—the estimated time until a supermassive black hole with a mass of 20 trillion solar masses decays by the Hawking process.[46] This marks the end of the Black Hole Era. Beyond this point, if protons do decay, the universe enters the Dark Era, in which all physical objects have decayed to subatomic particles, gradually winding down to their final energy state.[38]
  • 101500 years— Assuming protons do not decay, the estimated time until all matter decays to iron-56. See isotopes of iron.[41]

Beyond 1 millinillion (103003) years from now

[править | править код]
  • years[a]— low estimate for the time until all matter collapses into black holes, assuming no proton decay.[41] Subsequent Black Hole Era and transition to the Dark Era are, on this timescale, instantaneous.
  • years—estimated time for a Boltzmann brain to appear in the vacuum via a spontaneous entropy decrease.[47]
  • years— high estimate for the time until all matter collapses into neutron stars or black holes, again assuming no proton decay.[41]
  • years— high estimate for the time for the universe to collapse into a sink, or terminal vacuum.[47]
  • years—scale of an estimated Poincaré recurrence time for the quantum state of a hypothetical box containing an isolated black hole of stellar mass.[48] This time assumes a statistical model subject to Poincaré recurrence. A much simplified way of thinking about this time is that in a model where our universe's history repeats itself arbitrarily many times due to properties of statistical mechanics, this is the time scale when it will first be somewhat similar (for a reasonable choice of "similar") to its current state again.
  • years—scale of an estimated Poincaré recurrence time for the quantum state of a hypothetical box containing a black hole with the mass within the presently visible region of our universe.[48] This time assumes a statistical model subject to Poincaré recurrence. A much simplified way of thinking about this time is that in a model where our universe's history repeats itself arbitrarily many times due to properties of statistical mechanics, this is the time scale when it will first be somewhat similar (for a reasonable choice of "similar") to its current state again.
  • years—scale of an estimated Poincaré recurrence time for the quantum state of a hypothetical box containing a black hole with the estimated mass of the entire universe, observable or not, assuming a certain inflationary model with an inflaton whose mass is 10−6 Planck masses.[48]

^  Beyond this point, years are used for convenience, though the numbers involved are so great that standard units are effectively meaningless.

  1. Doug Sanders. Area around Chernobyl remains uninhabitable 25 years later. Globe and Mail. Дата обращения: 14 июня 2011.
  2. Nick Strobel. Astronomy without a Telescope. astronomynotes.com. Дата обращения: 16 апреля 2011.
  3. 1 2 Pole Star. Universe Today. Дата обращения: 16 апреля 2011.
  4. John Meeus, More Mathematical Astronomy Morsels. Section 6.3. Willmann-Bell, 2002. ISBN: 978-0943396743
  5. García-Sánchez, J. (2001). "Stellar encounters with the solar system". Astronomy & Astrophysics. 379: 642. Bibcode:2001A&A...379..634G. doi:10.1051/0004-6361:20011330. {{cite journal}}: Неизвестный параметр |coauthors= игнорируется (|author= предлагается) (справка)
  6. Fraser Cain. The End of Everything. Universe Today (2007). Дата обращения: 2 июня 2011.
  7. Why is Polaris the North Star? NASA. Дата обращения: 10 апреля 2011.
  8. 1 2 Matthews, R. A. J. (Spring 1994). "The Close Approach of Stars in the Solar Neighborhood". 35 (1): 1. Bibcode:1994QJRAS..35....1M. {{cite journal}}: Cite journal требует |journal= (справка); Неизвестный параметр |unused_data= игнорируется (справка)
  9. Berger A, Loutre MF (2002). "Climate: An exceptionally long interglacial ahead?". Science. 297 (5585): 1287—8. doi:10.1126/science.1076120. PMID 12193773.
  10. Niagara Falls Geology Facts & Figures. Niagara Parks. Дата обращения: 29 апреля 2011.
  11. Ken Tapping. The Unfixed Stars. National Research Council Canada (2005). Дата обращения: 29 декабря 2010.
  12. The Hubble Space Telescope (HST). NASA. Дата обращения: 14 июня 2011.
  13. Bostrom, Nick (2002). "Existential Risks: Analyzing Human Extinction Scenarios and Related Hazards". Journal of Evolution and Technology. 9Шаблон:Inconsistent citations {{cite journal}}: Неизвестный параметр |month= игнорируется (справка)Википедия:Обслуживание CS1 (postscript) (ссылка)
  14. Date With The Neighbors: Gliese 710 And Other Incoming Stars
  15. Eitan Haddok. Birth of an Ocean: The Evolution of Ethiopia's Afar Depression. Scientific American (2009). Дата обращения: 27 декабря 2010.
  16. Everything2: Petasecond. Дата обращения: сентябрь 2010.
  17. Все параметры шаблона {{cite web}} должны иметь имя. This is the way the World may look like 50 million years from now! Дата обращения: 23 декабря 2010.
  18. Tom Garrison. Essentials of Oceanography. — 5. — Brooks/Cole, year=2009. — P. 62.
  19. Continents in Collision: Pangea Ultima. NASA (2000). Дата обращения: 29 декабря 2010.
  20. Prof. Stephen A. Nelson. Meteorites, Impacts, and Mass Extinction. Tulane University. Дата обращения: 13 января 2011.
  21. Wayne B. Hayes (2007). "Is the outer Solar System chaotic?". Nature Physics. 3 (10): 689—691. arXiv:astro-ph/0702179. Bibcode:2007NatPh...3..689H. doi:10.1038/nphys728.
  22. Leong, Stacy Period of the Sun's Orbit around the Galaxy (Cosmic Year. The Physics Factbook (2002). Дата обращения: 2 апреля 2007.
  23. Scotese, Christopher R. Pangea Ultima will form 250 million years in the Future. Paleomap Project. Дата обращения: 13 марта 2006.
  24. Questions Frequently Asked by the Public About Eclipses. NASA. Дата обращения: 7 марта 2010.
  25. "'The end of the world' has already begun, UW scientists say" (Press release). University of Washington. January 13, 2003. Дата обращения: 5 июня 2007.
  26. Jeff Hecht (2 April 1994). "Science: Fiery future for planet Earth". New Scientist. No. 1919. p. 14. Дата обращения: 29 октября 2007.
  27. C. F. Chyba, D. G. Jankowski, P. D. Nicholson (1989). "Tidal evolution in the Neptune-Triton system". Astronomy & Astrophysics. 219: 23. Bibcode:1989A&A...219L..23C.{{cite journal}}: Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка)
  28. K. P. Schroder, Robert Connon Smith (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155—163. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.{{cite journal}}: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)
  29. Ralph D. Lorenz, Jonathan I. Lunine, Christopher P. McKay (1997). "Titan under a red giant sun: A new kind of "habitable" moon" (PDF). Geophysical Research Letters. 24 (22): 2905—8. Bibcode:1997GeoRL..24.2905L. doi:10.1029/97GL52843. PMID 11542268. Дата обращения: 21 марта 2008.{{cite journal}}: Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка)
  30. Marc Delehanty. Sun, the solar system's only star. Astronomy Today. Дата обращения: 23 июня 2006.
  31. Fraser Cain. When Our Galaxy Smashes Into Andromeda, What Happens to the Sun? Universe Today (2007). Дата обращения: 16 мая 2007.
  32. J. T. Cox, Abraham Loeb (2007). "The Collision Between The Milky Way And Andromeda". Monthly Notices of the Royal Astronomical Society. 386 (1): 461. arXiv:0705.1170. Bibcode:2008MNRAS.tmp..333C. doi:10.1111/j.1365-2966.2008.13048.x. Дата обращения: 2 апреля 2008.{{cite journal}}: Википедия:Обслуживание CS1 (bibcode) (ссылка) Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)
  33. Robert Roy Britt. The Big Rip: New Theory Ends Universe by Shredding Everything. space.com. Дата обращения: 27 декабря 2010.
  34. John Carl Villanueva. Big Rip. Universe Today (2009). Дата обращения: 28 декабря 2010.
  35. C.D. Murray & S.F. Dermott. Solar System Dynamics. — Cambridge University Press, 1999. — P. 184. — ISBN 0521572959.
  36. Dickinson, Terence. From the Big Bang to Planet X. — Camden East, Ontario : Camden House, 1993. — P. 79–81.
  37. JR Minkel. A.D. 100 Billion: Big Bang Goes Bye-Bye. Scientific American (2007).
  38. 1 2 3 4 5 6 7 8 9 A dying universe: the long-term fate and evolution of astrophysical objects, Fred C. Adams and Gregory Laughlin, Reviews of Modern Physics 69, #2 (April 1997), pp. 337–372. Bibcode1997RvMP...69..337A. doi:10.1103/RevModPhys.69.337. arXiv:astro-ph/9701131. Ошибка в сносках?: Неверный тег <ref>: название «dying» определено несколько раз для различного содержимого
  39. Life, the Universe, and Nothing: Life and Death in an Ever-expanding Universe (PDF preprint), Lawrence M. Krauss and Glenn D. Starkman, Astrophysical Journal, 531 (March 1, 2000), pp. 22–30. doi:10.1086/308434. Bibcode2000ApJ...531...22K. arXiv:astro-ph/9902189.
  40. The Five Ages of the Universe, Fred Adams and Greg Laughlin, New York: The Free Press, 1999, ISBN 0-684-85422-8.
  41. 1 2 3 4 5 6 Dyson, Freeman J. (1979). "Time Without End: Physics and Biology in an open universe". Reviews of Modern Physics. 51 (3): 447. Bibcode:1979RvMP...51..447D. doi:10.1103/RevModPhys.51.447. Дата обращения: 5 июля 2008.
  42. Schröder, K.-P.; Connon Smith, Robert (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.{{cite journal}}: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)
  43. I. J. Sackmann, A. I. Boothroyd, K. E. Kraemer (1993). "Our Sun. III. Present and Future". Astrophysical Journal. 418: 457. Bibcode:1993ApJ...418..457S. doi:10.1086/173407.{{cite journal}}: Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка)
  44. Theory: Decays, SLAC Virtual Visitor Center. Accessed on line June 28, 2008.
  45. 1 2 Around 264 half-lives. For the worked computation with a different value of the half-life, see Solution, exercise 17, One Universe: At Home in the Cosmos, Neil de Grasse Tyson, Charles Tsun-Chu Liu, and Robert Irion, Washington, D.C.: Joseph Henry Press, 2000. ISBN 0-309-06488-0.
  46. 1 2 Particle emission rates from a black hole: Massless particles from an uncharged, nonrotating hole, Don N. Page, Physical Review D 13 (1976), pp. 198–206. doi:10.1103/PhysRevD.13.198. See in particular equation (27).
  47. 1 2 Linde, Andrei. (2007). "Sinks in the landscape, Boltzmann brains and the cosmological constant problem". Journal of Cosmology and Astroparticle Physics. 2007 (01): 022. doi:10.1088/1475-7516/2007/01/022. Дата обращения: 26 июня 2009.
  48. 1 2 3 Information Loss in Black Holes and/or Conscious Beings?, Don N. Page, Heat Kernel Techniques and Quantum Gravity (1995), S. A. Fulling (ed), p. 461. Discourses in Mathematics and its Applications, No. 4, Texas A&M University Department of Mathematics. arXiv:hep-th/9411193. ISBN 0963072838.