Хиральность (математика)

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Правило левой руки и правило правой руки

Хира́льность (англ. chirality, от др.-греч. χείρ — рука) — свойство геометрической фигуры, состоящее в отсутствии её совместимости со своей идеальной зеркальной копией[1][2]. Другими словами, хиральность — отсутствие зеркальной симметрии у геометрической фигуры[2].

Ахиральность — наличие зеркальной симметрии у геометрической фигуры[2].

Произвольный невырожденный неравнобедренный треугольник — одна из простейших хиральных фигур на плоскости. Такой треугольник нельзя наложить на его зеркально симметричное изображение посредством комбинацией параллельных переносов и поворотов плоскости. Произвольный равнобедренный треугольник ахирален на плоскости[2].

Однако хиральные треугольники на плоскости ахиральны в трёхмерном пространстве, поскольку всегда существует комбинация параллельного переноса и поворота трёхмерного пространства, идеально накладывающие треугольник на его зеркально симметричное изображение в плоскости[2].

Хиральная фигура и её зеркальный образ называют энантиоморфами. Слово «энантиоморф» происходит от др.-греч. εναντιος (энантиос) — «противоположный», и μορφη (морфе) — «форма». Нехиральный объект также называется амфихиральным.

Винтовая линия (а также витая пряжа, штопор, пропеллер и т. п.) и лента Мёбиуса — это трёхмерные хиральные объекты. Фигурки тетрамино в форме букв J, L, S и Z из популярной игры «Тетрис» также обладают хиральностью, но только в двумерном пространстве.

Некоторым хиральным объектам, таким как винт, можно приписать правую (левую) ориентацию, в соответствии с правилом правой руки (правилом левой руки).

Хиральность и группы симметрии

[править | править код]

Фигура ахиральна тогда и только тогда, когда её группа симметрий содержит хотя бы одну изометрию, меняющую ориентацию. В евклидовой геометрии любая изометрия имеет вид , где  — ортогональная матрица, а  — вектор. Определитель матрицы равен 1 или −1. Если он равен −1, то изометрия меняет ориентацию, в противном случае она сохраняет ориентацию.

Хиральность в трёхмерном пространстве

[править | править код]

В трёхмерном пространстве любая фигура, обладающая плоскостью симметрии или центром симметрии ахиральна. Однако, существуют ахиральные фигуры, не обладающие ни центром, ни плоскостью симметрии, например:

Эта фигура инвариантна относительно меняющего ориентацию преобразования и поэтому ахиральна, но не обладает ни плоскостью, ни центром симметрии. Фигура

также ахиральна, так как начало координат является для неё центром симметрии, но у неё нет плоскости симметрии.

Хиральность в двух измерениях

[править | править код]

В двумерном пространстве любая фигура, обладающая осью симметрии, является ахиральной. Можно показать, что любая ограниченная ахиральная фигура обладает осью симметрии. Для бесконечных фигур это не обязательно выполняется. Рассмотрим следующий (конечный) рисунок:

> > > > > > > > > >
 > > > > > > > > > >

Это хиральная фигура, так как она не совпадает со своим зеркальным изображением:

 > > > > > > > > > > 
> > > > > > > > > >

Но если продолжить его вправо и влево до бесконечности, то получится неограниченная ахиральная фигура, не обладающая осью симметрии. Её группа симметрий — это группа бордюра, порождённая единственным скользящим отражением.

Теория узлов

[править | править код]

Узел называется ахиральным, если его можно непрерывно деформировать в его зеркальный образ, в противном случае его называют хиральным. Например, незаузлённый узел и «восьмёрка» ахиральны, в то время как трилистный узел хирален.

Примечания

[править | править код]