Замыкание (топология)

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Замыкание (геометрия)»)
Перейти к навигации Перейти к поиску

Замыка́ние — конструкция, дающая наименьшее замкнутое множество, содержащее данное множество топологического пространства.

Замыкание множества обычно обозначается Другие обозначения:

Определения

[править | править код]

Следующие два определения равносильны.

Как наименьшее замкнутое множество

[править | править код]

Пусть есть подмножество топологического пространства Замыканием в называется пересечение всех замкнутых множеств, содержащих

Замечание. Поскольку пересечение произвольного семейства замкнутых множеств замкнуто, замыкание всегда замкнуто.

Через точки прикосновения

[править | править код]

Точка топологического пространства называется точкой прикосновения множества если любая окрестность содержит хотя бы одну точку множества

Множество всех точек прикосновения называется замыканием

  1. Замыкание множества замкнуто.
  2. Замыкание множества содержит само множество, то есть
  3. Замыкание множества содержит все его предельные точки.
  4. Множество замкнуто тогда и только тогда, когда оно совпадает со своим замыканием, то есть
  5. Свойство идемпотентности: повторное применение операции замыкания не изменяет результат (что сразу вытекает из свойств 1 и 4):
  6. Замыкание сохраняет отношение вложения, то есть
  7. Замыкание объединения есть объединение замыканий, то есть
  8. Замыкание пересечения является подмножеством пересечения замыканий, то есть

Во всех нижеследующих примерах топологическим пространством является числовая прямая с заданной на ней стандартной топологией.

  • где  — множество рациональных чисел.