Ломаная

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Ломаная линия»)
Перейти к навигации Перейти к поиску

Ло́маная (ло́маная ли́ния) — геометрическая фигура в пространстве, образованная конечным набором отрезков, расположенных так, что конец первого является началом второго, конец второго — началом третьего и т. д.; причём соседние отрезки не должны лежать на одной прямой.[1]

Сами отрезки называются сторонами ломаной, а их концы — вершинами ломаной. Ломаная обозначается последовательным указанием её вершин.

Определение

[править | править код]

Ломаной называется фигура, которая состоит из отрезков , , …, .

Точки , …, называются вершинами ломаной, а отрезки , , …,  — сторонами (звеньями) ломаной.

Ломаная называется невырожденной, если для любого отрезки и не лежат на одной прямой;[источник не указан 593 дня] в противном случае — вырожденной.[источник не указан 593 дня]

Невырожденная ломаная A1A2A3A4A5A6

Типы ломаных

[править | править код]
  • Ломаная имеет самопересечение, если хотя бы два её несмежных звена имеют общую точку:
Ломаная с самопересечениями
Самопересекающаяся ломаная A1A2A3A4A5A6
Изображённую здесь ломаную следует называть «ломаная A1A2A3A4A5A6».
  • Ломаная называется замкнутой, если первая и последняя точки ломаной совпадают; в этом случае дополнительно требуют, чтобы отрезки и также не лежали на одной прямой:
Замкнутая ломаная
Замкнутая ломаная A1A2A3A4A5A1
Замкнутую плоскую ломаную часто называют многоугольником: в этом случае изображённая ломаная A1A2A3A4A5A1 будет называться «многоугольник A1A2A3A4A5A1», а звенья будут называться сторонами многоугольника. В ряде случаев, например, при рассмотрении многогранников, стороны многоугольника называются рёбрами.

Свойства ломаной

[править | править код]

Длиной ломаной называется сумма длин её сторон.

  • Длина ломаной не меньше длины отрезка, соединяющего её концы.

Примечания

[править | править код]
  1. Киселев А. П. Геометрия. — Ч. 1 : Планиметрия : учебник для 6—9 кл. семилет. и сред. школы / под ред. и с доп. проф. Н. А. Глаголева. — 21-е изд. — М.: Учпедгиз, 1962. — С. 19. — 184 с. Архивировано 27 апреля 2023 года.