Парадокс субмарины

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Парадокс подводной лодки»)
Перейти к навигации Перейти к поиску

Парадо́кс субмари́ны (иногда называемый парадо́ксом Са́ппли) — мысленный эксперимент в рамках теории относительности Эйнштейна, приводящий к трудноразрешимому парадоксу.

Согласно специальной теории относительности Эйнштейна с точки зрения неподвижного наблюдателя размеры объекта, движущегося со скоростью, близкой к скорости света, уменьшаются в направлении движения. Однако с точки зрения объекта, напротив, именно неподвижные наблюдатели кажутся короче.

Если предположить, что некая подлодка движется под водой с околосветовой скоростью, неподвижным наблюдателям она покажется сжавшейся. Плотность её, соответственно, должна увеличиться, что непременно потянет её на дно. Но со стороны объекта — находящегося на борту подлодки экипажа — всё воспринималось бы с точностью до наоборот: «бегущая» вода вокруг них сжимается, а значит становится более плотной и выталкивает лодку на поверхность.

В 1989 году Джеймс Саппли разрешил парадокс с использованием специальной теории относительности. В честь него эту задачу называют также «Парадокс Саппли».

В 2003 году бразилец Джордж Матсас из Сан-Паулу рассмотрел этот парадокс, используя общую теорию относительности. У обоих учёных вывод был одинаков: подлодка будет погружаться.

Учёные объясняют парадокс по-разному. На слои и на лодку действует масса факторов, требующих обязательного учёта для успешного решения этого парадокса. Здесь и увеличение воздействия гравитации на лодку, которая потянет её вниз, и искажение формы слоёв воды вверх (они «задираются» с точки зрения подлодки из-за нарушения одновременности начала ускорения).

Суть решения

[править | править код]

Всё рассмотрение можно вести в рамках специальной теории относительности, переходя в движущуюся с ускорением систему отсчёта (в которой удобно ввести координаты Риндлера). Проще, однако, рассмотреть всё из инерциальной системы отсчёта, где ускорение жидкости вызывается какой-либо причиной, например, жидкость электрически заряжена и находится в электрическом поле, либо её подпирает ускоренно движущаяся стенка. Важно, что эта причина не ускоряет подлодку — например, подводная лодка нейтральна, либо не контактирует со стенкой. Ограничимся начальным моментом времени, когда жидкость покоится, а скорость подлодки равна 0 для «неподвижного» случая, и (с соответствующим ) для «движущегося».

С точки зрения инерциальных наблюдателей ускорение подводной лодки (не важно, в покое или в движении) вызывается передачей импульса от молекул жидкости к молекулам подводной лодки — это микроскопическое определение давления. Эта передача пропорциональна площади поверхности жидкости, контактирующей с подлодкой, и, соответственно, уменьшается в раз при сокращении подводной лодки из-за её движения. Поэтому передача импульса равна для «неподвижной» подлодки, и для «движущейся». Теперь несложно вычислить ускорения, получаемые подлодками в начальный момент: для «неподвижной» подлодки это будет величина, по условию совпадающая с ускорением жидкости

где  — масса подлодки, а для «движущейся»

где учтено, что подводная лодка ускоряется перпендикулярно направлению своего движения. Как видно, ускорение «движущейся» подлодки меньше, чем покоящейся — она затонет.

Теперь рассмотрим ситуацию в системе отсчёта, где подлодка «неподвижна», но двигается жидкость. Плотность жидкости из-за её релятивистского сокращения возрастёт, что увеличит силу Архимеда в раз, то есть передача импульса станет равна , что вызовет ускорение подлодки

Однако при переходе в эту инерциальную систему отсчёта ускорение жидкости также изменится. Выделив в жидкости некоторый уровень, имеем в исходной системе его уравнение движения , а в новой, согласно преобразованиям Лоренца для месторасположения подводной лодки , получаем то есть ускорение уровня жидкости, измеряемое с подлодки, равно . Оно больше ускорения подлодки — она затонет.

Точно такой же результат получается, если взять правильное уравнение гиперболического движения вместо приближённого, верного лишь вблизи . Есть ещё некоторый эффект, связанный с нарушением одновременности ускорения различных частей жидкости относительно системы отсчёта подлодки, но он может быть сведён к пренебрежимо малой величине выбором малого ускорения и/или размера подлодки в направлении движения (смотри работу Матсаса для подробного разбора).