跳转到内容

魔術正方體:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
无编辑摘要
无编辑摘要
 
(未显示4个用户的21个中间版本)
第1行: 第1行:
{{about|數學上的魔術立方體|益智玩具|魔術方塊}}
{{about|the mathematical concept|the flashbulb cartridges|Magicube|the puzzle|Rubik's Cube}}
[[File:Simple Magic Cube.svg|thumb|right|An example of a 3 × 3 × 3 magic cube. In this example, no slice is a magic square. In this case, the cube is classed as a [[简易魔术正方体]].]]
[[File:Simple Magic Cube.svg|thumb|right|一個3 × 3 × 3[[简易魔术正方体]]的例子]]
[[数学]]方面論述,'''魔術正方體'''[[維度]]上相當於[[幻方]],也就是''n''&nbsp;&times;&nbsp;''n'' 式排列方體,在每個線段交點填上任意不重複[[整]],並使得每行、每列每個柱上數字的和相同。而此立方體的[[幻方常數]]表示為''M''<sub>3</sub>(''n'').<ref name=":0">{{Cite web|url=http://mathworld.wolfram.com/MagicCube.html|title=Magic Cube|last=W.|first=Weisstein, Eric|website=mathworld.wolfram.com|language=en|access-date=2016-12-04}}</ref> It can be shown that if a magic cube consists of the numbers 1, 2, ..., ''n''<sup>3</sup>, then it has magic constant {{OEIS|id=A027441}}
[[数学]],'''魔術正方體'''[[維度|三維]][[幻方]],也就是排列成''n''&nbsp;&times;&nbsp;''n''&nbsp;&times;&nbsp;''n''正一組不重複[[整]],其中每行、每列每個柱及四條{{tsl|en|Space diagonals||空間對角線}}上數字的和相同,等於立方體的[[幻方常數]],記為''M''<sub>3</sub>(''n'')<ref name=":0">{{Cite mathworld|urlname=MagicCube|title=Magic Cube|access-date=2016-12-04|archive-date=2021-03-07|archive-url=https://web.archive.org/web/20210307033550/https://mathworld.wolfram.com/MagicCube.html|dead-url=no}}</ref>若魔術立方體由數列1, 2, ..., ''n''<sup>3</sup>構成,則可以證明其幻方常數為{{OEIS|id=A027441}}
:<math>M_3(n) = \frac{n(n^3+1)}{2}</math>
另外,如果每個[[截面 (幾何)|截面]]對角線上的數字之和亦等於幻方常數,則稱此立方體為{{tsl|en|perfect magic cube||完美魔方}};否則,稱其為{{tsl|en|semiperfect magic cube||半完美魔方}}。數字''n''稱為魔方的階。如果幻方{{tsl|en|broken space diagonal||破碎空間對角線}}上的數字和也等於幻方常數,則稱其為[[泛對角線立方體]]。


==參見==
:<math>M_3(n) = \frac{n(n^3+1)}{2}.</math>

If, in addition, the numbers on every [[截面 (幾何)]] diagonal also sum up to the cube's magic number, the cube is called a {{tsl|en|perfect magic cube||perfect magic cube}}; otherwise, it is called a {{tsl|en|semiperfect magic cube||semiperfect magic cube}}. The number ''n'' is called the order of the magic cube. If the sums of numbers on a magic cube's {{tsl|en|broken space diagonal||broken space diagonal}}s also equal the cube's magic number, the cube is called a [[pandiagonal cube]].

==Alternate definition==
In recent years, an alternate definition for the {{tsl|en|perfect magic cube||perfect magic cube}} has gradually come into use. It is based on the fact that a pandiagonal magic square has traditionally been called '''perfect''', because all possible lines sum correctly. This is not the case with the above definition for the cube.

==[[Multimagic cube]]s==
{{Update|inaccurate=yes|reason = see the main article more information has been picked up from MathWorld and other sources about the known cubes|date=October 2011}}
如同[[魔術方塊]]一般, a [[bimagic cube]] has the additional property of remaining a magic cube when all of the entries are squared, a [[trimagic cube]] remains a magic cube under both the operations of squaring the entries and of cubing the entries.<ref name=":0" /> (Only two of these are known, as of 2005.) A {{tsl|en|tetramagic cube||tetramagic cube}} remains a magic cube when the entries are squared, cubed, or raised to the fourth power.

==Magic cubes based on Dürer's and Gaudi Magic squares==
A magic cube can be built with the constraint of a given magic square appearing on one of its faces [http://sites.google.com/site/aliskalligvaen/home-page/-magic-cube-with-duerer-s-square Magic cube with the magic square of Dürer], and [http://sites.google.com/site/aliskalligvaen/home-page/-magic-cube-with-gaudi-s-square Magic cube with the magic square of Gaudi]

==See also==
{{colbegin||20em}}
{{colbegin||20em}}
* {{tsl|en|Magic hypercube||魔術超立方體}}
* [[Perfect magic cube]]
* {{tsl|en|Magic series||魔術系列}}
* [[Semiperfect magic cube]]
* {{tsl|en|Nasik magic hypercube||Nasik魔術超立方體}}
* [[Multimagic cube]]
* {{tsl|en|Magic hypercube||Magic hypercube}}
* {{tsl|en|Magic cube class||Magic cube class}}
* {{tsl|en|Magic series||Magic series}}
* [[Asymptotic magic hyper-tesseract]]
* {{tsl|en|Nasik magic hypercube||Nasik magic hypercube}}
* {{tsl|en|John R. Hendricks||John R. Hendricks}}
* {{tsl|en|John R. Hendricks||John R. Hendricks}}
{{colend}}
{{colend}}


== References ==
== 注釋 ==
{{reflist}}
<references />{{Magic polygons}}


==External links==
==外部連結==
* {{MathWorld |urltitle=MagicCube |title=Magic Cube}}
* {{MathWorld |urltitle=MagicCube |title=Magic Cube}}
* Harvey Heinz, [http://members.shaw.ca/hdhcubes/index.htm All about Magic Cubes]
* Harvey Heinz, [http://members.shaw.ca/hdhcubes/index.htm All about Magic Cubes] {{Wayback|url=http://members.shaw.ca/hdhcubes/index.htm |date=20181124125113 }}
* Marian Trenkler, [http://math.ku.sk/~trenkler/aa-cub-01.pdf Magic p-dimensional cubes]
* Marian Trenkler, [http://math.ku.sk/~trenkler/aa-cub-01.pdf Magic p-dimensional cubes] {{Wayback|url=http://math.ku.sk/~trenkler/aa-cub-01.pdf |date=20160303231904 }}
* Marian Trenkler, [http://math.ku.sk/~trenkler/05-MagicCube.pdf An algorithm for making magic cubes]
* Marian Trenkler, [http://math.ku.sk/~trenkler/05-MagicCube.pdf An algorithm for making magic cubes] {{Wayback|url=http://math.ku.sk/~trenkler/05-MagicCube.pdf |date=20160303171656 }}
* Marian Trenkler, [http://www.imi.ajd.czest.pl/zeszyty/zeszyt13/Trenkler.pdf On additive and multiplicative magic cubes]
* Marian Trenkler, [https://web.archive.org/web/20120321091253/http://www.imi.ajd.czest.pl/zeszyty/zeszyt13/Trenkler.pdf On additive and multiplicative magic cubes]
* [http://sites.google.com/site/aliskalligvaen/home-page Ali Skalli's magic squares and magic cubes]
* [http://sites.google.com/site/aliskalligvaen/home-page Ali Skalli's magic squares and magic cubes] {{Wayback|url=http://sites.google.com/site/aliskalligvaen/home-page |date=20130525015716 }}


[[Category:Magic squares]]
[[Category:魔術正方體]]
[[Category:趣味數學]]
[[Category:幻方]]

2022年11月23日 (三) 10:11的最新版本

一個3 × 3 × 3简易魔术正方体的例子

数学中,魔術正方體三維幻方,也就是排列成n × n × n正方體的一組不重複整數,其中每行、每列、每個柱及四條空間對角線英语Space diagonals上數字的和均相同,等於立方體的幻方常數,記為M3(n)。[1]若魔術立方體由數列1, 2, ..., n3構成,則可以證明其幻方常數為(OEIS數列A027441

另外,如果每個截面對角線上的數字之和亦等於幻方常數,則稱此立方體為完美魔方英语perfect magic cube;否則,稱其為半完美魔方英语semiperfect magic cube。數字n稱為魔方的階。如果幻方破碎空間對角線英语broken space diagonal上的數字和也等於幻方常數,則稱其為泛對角線立方體

參見

[编辑]

注釋

[编辑]
  1. ^ Weisstein, Eric W. (编). Magic Cube. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2016-12-04]. (原始内容存档于2021-03-07) (英语). 

外部連結

[编辑]