跳转到内容

碲半胱氨酸:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
无编辑摘要
 
(未显示3个用户的3个中间版本)
第1行: 第1行:
{{noteTA|G1=Chemistry}}
{{Chembox
{{Chembox
<!-- Images -->
<!-- Images -->
第9行: 第10行:
<!-- Sections -->
<!-- Sections -->
| Section1 = {{Chembox Identifiers
| Section1 = {{Chembox Identifiers
| CASNo =
| CASNo = 122096-31-5
| CASNo_Ref = {{cascite|correct|CAS}}
| PubChem = 129631934
| PubChem = 129631934
| ChemSpiderID = 34500822
| ChemSpiderID = 34500822
第34行: 第36行:


==性质==
==性质==
也许是因为碳-碲键键能低(200 kJ/mol,相较于碳-硒键键能234 kJ/mol和碳-硫键键能272 kJ/mol),<ref>{{cite journal|last1=Chivers|first1=Tristram|last2=Laitinen|first2=Risto S.|title=Tellurium: a maverick among the chalcogens|journal=Chemical Society Reviews|date=23 March 2015|volume=44|issue=7|pages=1725–1739|doi=10.1039/C4CS00434E|pmid=25692398|language=en|issn=1460-4744}}</ref>碲半胱氨酸不存在于任何已知的天然生物体中,因此它的研究相比硒代半胱氨酸相对不足。<ref>{{cite book|title=Advances in Microbial Physiology|date=2007|publisher=Academic Press|isbn=9780080560649|page=4|url=https://books.google.com/books?id=1G95oJ1JONIC&pg=PA4|language=en}}</ref>尽管如此,某些生物如真菌[[烟曲霉]]在无硫环境中,能够将碲半胱氨酸和碲甲硫氨酸结合到氨基酸和蛋白质中。<ref>{{cite journal|last1=Ramadan|first1=ShadiaE.|last2=Razak|first2=A.A.|last3=Ragab|first3=A.M.|last4=El-Meleigy|first4=M.|title=Incorporation of tellurium into amino acids and proteins in a tellurium-tolerant fungi|journal=Biological Trace Element Research|date=1 June 1989|volume=20|issue=3|pages=225–232|doi=10.1007/BF02917437|pmid=2484755|s2cid=9439946|language=en|issn=0163-4984}}</ref>
也许是因为碳-碲键键能低(200 kJ/mol,相较于碳-硒键键能234 kJ/mol和碳-硫键键能272 kJ/mol),<ref>{{cite journal|last1=Chivers|first1=Tristram|last2=Laitinen|first2=Risto S.|title=Tellurium: a maverick among the chalcogens|journal=Chemical Society Reviews|date=23 March 2015|volume=44|issue=7|pages=1725–1739|doi=10.1039/C4CS00434E|pmid=25692398|language=en|issn=1460-4744}}</ref>碲半胱氨酸不存在于任何已知的天然生物体中,因此它的研究相比硒代半胱氨酸相对不足。<ref>{{cite book|title=Advances in Microbial Physiology|date=2007|publisher=Academic Press|isbn=9780080560649|page=4|url=https://books.google.com/books?id=1G95oJ1JONIC&pg=PA4|language=en|access-date=2021-08-15|archive-date=2021-08-27|archive-url=https://web.archive.org/web/20210827135521/https://books.google.com/books?id=1G95oJ1JONIC&pg=PA4|dead-url=no}}</ref>尽管如此,某些生物如真菌[[烟曲霉]]在无硫环境中,能够将碲半胱氨酸和碲甲硫氨酸结合到氨基酸和蛋白质中。<ref>{{cite journal|last1=Ramadan|first1=ShadiaE.|last2=Razak|first2=A.A.|last3=Ragab|first3=A.M.|last4=El-Meleigy|first4=M.|title=Incorporation of tellurium into amino acids and proteins in a tellurium-tolerant fungi|journal=Biological Trace Element Research|date=1 June 1989|volume=20|issue=3|pages=225–232|doi=10.1007/BF02917437|pmid=2484755|s2cid=9439946|language=en|issn=0163-4984}}</ref>


已经观察到,当掺入[[谷胱甘肽S-转移酶]]时,碲半胱氨酸能有效地抑制{{le|氨酰化|Aminoacylation}},并增加[[谷胱甘肽过氧化物酶]]的效率。<ref>{{cite journal|last1=Liu|first1=Xiaoman|last2=Silks|first2=Louis A.|last3=Liu|first3=Cuiping|last4=Ollivault-Shiflett|first4=Morgane|last5=Huang|first5=Xin|last6=Li|first6=Jing|last7=Luo|first7=Guimin|last8=Hou|first8=Ya-Ming|last9=Liu|first9=Junqiu|last10=Shen|first10=Jiacong|title=Incorporation of Tellurocysteine into Glutathione Transferase Generates High Glutathione Peroxidase Efficiency|journal=Angewandte Chemie International Edition|date=2 March 2009|volume=48|issue=11|pages=2020–2023|doi=10.1002/anie.200805365|pmid=19199319}}</ref>
已经观察到,当掺入[[谷胱甘肽S-转移酶]]时,碲半胱氨酸能有效地抑制{{le|氨酰化|Aminoacylation}},并增加[[谷胱甘肽过氧化物酶]]的效率。<ref>{{cite journal|last1=Liu|first1=Xiaoman|last2=Silks|first2=Louis A.|last3=Liu|first3=Cuiping|last4=Ollivault-Shiflett|first4=Morgane|last5=Huang|first5=Xin|last6=Li|first6=Jing|last7=Luo|first7=Guimin|last8=Hou|first8=Ya-Ming|last9=Liu|first9=Junqiu|last10=Shen|first10=Jiacong|title=Incorporation of Tellurocysteine into Glutathione Transferase Generates High Glutathione Peroxidase Efficiency|journal=Angewandte Chemie International Edition|date=2 March 2009|volume=48|issue=11|pages=2020–2023|doi=10.1002/anie.200805365|pmid=19199319}}</ref>
第45行: 第47行:
{{碲化合物}}
{{碲化合物}}


[[Category:基酸]]
[[分類:Α-胺基酸]]
[[Category:有机碲化合物]]
[[分類:有机碲化合物]]
[[Category:碲醇]]
[[分類:碲醇]]

2023年5月10日 (三) 13:05的最新版本

碲半胱氨酸
IUPAC名
(2R)-2-Amino-3-tellanylpropanoic acid
别名 碲代半胱氨酸
识别
CAS号 122096-31-5  checkY
PubChem 129631934
ChemSpider 34500822
SMILES
 
  • C(C(C(=O)O)N)[TeH]
性质
化学式 C3H7NO2Te
摩尔质量 216.69 g·mol−1
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

碲半胱氨酸,又称Te-Cys是一种结构类似丝氨酸半胱氨酸硒半胱氨酸的氨基酸,由原子取代侧链的而成。它不存在于生物体中。

性质

[编辑]

也许是因为碳-碲键键能低(200 kJ/mol,相较于碳-硒键键能234 kJ/mol和碳-硫键键能272 kJ/mol),[1]碲半胱氨酸不存在于任何已知的天然生物体中,因此它的研究相比硒代半胱氨酸相对不足。[2]尽管如此,某些生物如真菌烟曲霉在无硫环境中,能够将碲半胱氨酸和碲甲硫氨酸结合到氨基酸和蛋白质中。[3]

已经观察到,当掺入谷胱甘肽S-转移酶时,碲半胱氨酸能有效地抑制氨酰化英语Aminoacylation,并增加谷胱甘肽过氧化物酶的效率。[4]

制备

[编辑]

L-碲半胱氨酸可以由单质和(2R)-2-[(叔丁氧基羰基)氨基]-3-碘丙酸甲酯在四氢呋喃溶液在三乙基硼氢化锂下反应而成,会产生红色油状物。之后酸化并用碱处理,然后用柠檬酸处理,将pH值设为4.0,过滤和干燥后得到橙色固体(碲半胱氨酸)。[5]

参考资料

[编辑]
  1. ^ Chivers, Tristram; Laitinen, Risto S. Tellurium: a maverick among the chalcogens. Chemical Society Reviews. 23 March 2015, 44 (7): 1725–1739. ISSN 1460-4744. PMID 25692398. doi:10.1039/C4CS00434E (英语). 
  2. ^ Advances in Microbial Physiology. Academic Press. 2007: 4 [2021-08-15]. ISBN 9780080560649. (原始内容存档于2021-08-27) (英语). 
  3. ^ Ramadan, ShadiaE.; Razak, A.A.; Ragab, A.M.; El-Meleigy, M. Incorporation of tellurium into amino acids and proteins in a tellurium-tolerant fungi. Biological Trace Element Research. 1 June 1989, 20 (3): 225–232. ISSN 0163-4984. PMID 2484755. S2CID 9439946. doi:10.1007/BF02917437 (英语). 
  4. ^ Liu, Xiaoman; Silks, Louis A.; Liu, Cuiping; Ollivault-Shiflett, Morgane; Huang, Xin; Li, Jing; Luo, Guimin; Hou, Ya-Ming; Liu, Junqiu; Shen, Jiacong. Incorporation of Tellurocysteine into Glutathione Transferase Generates High Glutathione Peroxidase Efficiency. Angewandte Chemie International Edition. 2 March 2009, 48 (11): 2020–2023. PMID 19199319. doi:10.1002/anie.200805365. 
  5. ^ Stocking, Emily M.; Schwarz, Jessie N.; Senn, Hans; Salzmann, Michael; Silks, Louis A. Synthesis of L-selenocystine,L-[77Se]selenocystine and L-tellurocystine. Journal of the Chemical Society, Perkin Transactions 1. 1 January 1997, 0 (16): 2443–2448. ISSN 1364-5463. doi:10.1039/A600180G (英语).