六自由度:修订间差异
Kishinsagi(留言 | 贡献) 小 →游戏: 修正笔误 |
|||
(未显示8个用户的31个中间版本) | |||
第1行: | 第1行: | ||
[[File:6DOF en.jpg|right|thumb|upright=1.5| |
[[File:6DOF en.jpg|right|thumb|upright=1.5|六個運動的自由度:前後、上下、左右、俯仰(pitch)、偏擺(yaw)、翻滾(roll)]] |
||
'''Six degrees of freedom''' ('''6DoF''') refers to the freedom of movement of a [[rigid body]] in [[three-dimensional space]]. Specifically, the body is free to change [[position (geometry)|position]] as forward/backward (surge), up/down (heave), left/right (sway) [[translation (physics)|translation]] in three [[perpendicular]] [[coordinate axis|axes]], combined with changes in [[orientation (geometry)|orientation]] through [[rotation]] about three perpendicular axes, often termed pitch, yaw, and roll. |
|||
<!-- This is redundant and the reference to velocity is incorrect -- As the movement along each of the three axes is independent of each other and independent of the rotation about any of these axes, the motion indeed has six [[Degrees of freedom (physics and chemistry)|degrees of freedom]]. Notice that the initial conditions for a rigid body include also the derivatives of these variables (velocity and angular velocity), being therefore a 12-DOF system. --> |
|||
'''六自由度'''(Six degrees of freedom)是指[[剛體]]在[[三維空間]]中運動的六个[[自由度 (工程学)|自由度]],即在纵轴(前—後)、横轴(左—右)和 垂轴(上—下)三個互相[[垂直]]的[[坐標軸]]上进行的[[平移]]和[[旋轉]]。这三个轴通常以刚体所面向或行进的[[定向 (幾何)|方向]]为[[参考系|参照]],比如[[航空器三主轴]]。 |
|||
==Robotics== |
|||
[[serial manipulator|Serial]] and [[parallel manipulator]] systems are generally designed to position an end-effector with six degrees of freedom, consisting of three in translation and three in orientation. This provides a direct relationship between actuator positions and the configuration of the manipulator defined by its [[forward kinematics|forward]] and [[inverse kinematics]]. |
|||
平移是指与某一参照轴[[平行]]的''位置''变化,三个轴上的平移分别是: |
|||
[[Robot]] arms are described by their [[degrees of freedom (mechanics)|degrees of freedom]]. This number typically refers to the number of single-axis rotational joints in the arm, where higher number indicates an increased flexibility in positioning a tool. This is a practical metric, in contrast to the abstract definition of degrees of freedom which measures the aggregate positioning capability of a system.<ref>Paul, Richard P., ''Robot Manipulators: Mathematics, Programming, and Control'', MIT Press, 1981.</ref> |
|||
* 纵轴——前进和后退; |
|||
* 横轴——左移和右移; |
|||
* 垂轴——上升和下降。 |
|||
旋转是指围绕某一参照轴的''姿态''变化,三个轴上的旋转分别是: |
|||
In 2007, [[Dean Kamen]], inventor of the [[Segway PT|Segway]], unveiled a prototype robotic arm<ref>{{cite web|url=http://www.ted.com/talks/dean_kamen_previews_a_new_prosthetic_arm.html |title=Luke, a new prosthetic arm for soldiers |website=ted.com |date=2007-03-01 |accessdate=2017-02-26}}</ref> with 14 degrees of freedom for [[DARPA]]. [[Humanoid robot]]s typically have 30 or more degrees of freedom, with six degrees of freedom per arm, five or six in each leg, and several more in [[torso]] and [[neck]].<ref>Craig, John J., ''Introduction to Robotics: Mechanics and Control'', Addison-Wesley, 1986.</ref> |
|||
* 纵轴——翻滾(roll),分[[逆时针]]翻(左翻)和[[顺时针]]翻(右翻); |
|||
* 横轴——俯仰(pitch),分上仰和下俯; |
|||
* 垂轴——偏擺(yaw),分左摆和右摆。 |
|||
。 |
|||
== |
==機器人== |
||
{{le|串聯機器手臂|serial manipulator|串行}}及[[並聯機器手臂]]系統一般會設定可以以六個自由度的方式幫物體定位,其中包括三個平移自由度以及三個旋轉自由度。因此在機器手臂的組態以及致動器的位置之間會有對應關係,此關係是由{{le|正向运动学|forward kinematics|正運動學}}及[[逆运动学]]所定義的。 |
|||
The term is important in [[Degrees of freedom (mechanics)|mechanical systems]], especially [[biomechanics|biomechanical systems]] for analyzing and measuring properties of these types of systems that need to account for all six degrees of freedom. Measurement of the six degrees of freedom is accomplished today through both AC and DC magnetic or electromagnetic fields in sensors that transmit positional and angular data to a processing unit. The data is made relevant through software that integrate the data based on the needs and programming of the users. |
|||
[[机器人]]的[[自由度 (工程学)|自由度]]是其重要的性能指標。其數字一般是指其單臂上旋轉關節的數量,其自由度越高,表示其到達特定位置的靈活度就越高。這個是實務上的度量方式,和表示系統整體定位能力的絶對自由度不同<ref>Paul, Richard P., ''Robot Manipulators: Mathematics, Programming, and Control'', MIT Press, 1981.</ref>。 |
|||
Ascension Technology Corporation has recently created a 6DoF device small enough to fit in a biopsy needle, allowing physicians to better research at minute levels. The new sensor passively senses pulsed [[direct current|DC]] [[magnetic fields]] generated by either a cubic transmitter or a flat transmitter and is available for integration and manufacturability by medical [[Original equipment manufacturer|OEMs]].<ref>[http://www.medicalnewstoday.com/articles/118985.php Medical News Today.] Ascension Develops World's Smallest Six Degrees-of-Freedom Sensor For Emerging Medical Procedures. 25 Aug 2008</ref> |
|||
2007年時,[[賽格威]]的發明者[[狄恩·卡门]]為[[國防高等研究計劃署]](DARPA)提出了一個機器手臂的原型<ref>{{cite web |url=http://www.ted.com/talks/dean_kamen_previews_a_new_prosthetic_arm.html |title=Luke, a new prosthetic arm for soldiers |website=ted.com |date=2007-03-01 |accessdate=2017-02-26 |archive-date=2014-02-18 |archive-url=https://web.archive.org/web/20140218202040/http://www.ted.com/talks/dean_kamen_previews_a_new_prosthetic_arm.html |dead-url=no }}</ref>,共有14個自由度。[[類人型機器人]]的自由度至少會有30個,每一個手臂會有六個自由度,每一隻腳有五到六個自由度,而[[軀幹]]及[[頸]]也有更多的自由度<ref>Craig, John J., ''Introduction to Robotics: Mechanics and Control'', Addison-Wesley, 1986.</ref>。 |
|||
⚫ | |||
==工程== |
|||
'''Translation:''' |
|||
力學系統中的[[自由度 (工程学)|自由度]]很重要,特別在[[生物力学]]中會需要分析及量測,以確認其是否有六個自由度。六個自由度的量測是透過感測器以及交流或是直流的磁場(或電磁場),感測器會送出位移及旋轉信號給處理器。會透過使用者的需求以及規範,透過軟體得到這些資料。 |
|||
#Moving forward and backward on the X-axis. (Surging) |
|||
#Moving left and right on the Y-axis. (Swaying) |
|||
#Moving up and down on the Z-axis. (Heaving) |
|||
'''Rotation''' |
|||
#Tilting side to side on the X-axis. ([[flight dynamics|Roll]]ing) |
|||
#Tilting forward and backward on the Y-axis. ([[flight dynamics|Pitch]]ing) |
|||
#Turning left and right on the Z-axis. ([[flight dynamics|Yaw]]ing) |
|||
⚫ | |||
Ascension Technology Corporation已經開發了小到可以放在活檢針頭內的6DoF設備,可以讓醫生可以進行較好的研究。新的感測器接收發射器(cubic transmitter或flat transmitter)產生的脈衝直流[[磁場]],醫療產品[[代工生产]]商可以以此資料進行整合<ref>[http://www.medicalnewstoday.com/articles/118985.php Medical News Today.] {{Wayback|url=http://www.medicalnewstoday.com/articles/118985.php |date=20090615185751 }} Ascension Develops World's Smallest Six Degrees-of-Freedom Sensor For Emerging Medical Procedures. 25 Aug 2008</ref>。 |
|||
== Operational envelope types == |
|||
There are three types of operational envelope in the Six degrees of freedom. These types are ''Direct'', ''Semi-direct'' (conditional) and ''Non-direct,'' all regardless of the time remaining for the execution of the maneuver, the energy remaining to execute the maneuver and finally, if the motion is commanded via a biological entity (human) or a robotical entity (computer). |
|||
⚫ | 像船隻在海上的行動就是一個六自由度的例子。可以描述如下<ref>{{Cite web |url=http://www.pomorci.com/Zanimljivosti/Ship's%20movements%20at%20sea.pdf |title=Summary of ship movement |accessdate=2017-03-11 |archive-date=2011-11-25 |archive-url=https://web.archive.org/web/20111125015923/http://www.pomorci.com/Zanimljivosti/Ship's%20movements%20at%20sea.pdf |dead-url=no }}</ref>: |
||
'''''1-''' Direct type'' : Involved a degree can be commanded directly without particularly conditions and described as a normal operation. (An [[aileron]] on a basic airplane) |
|||
'''平移:''' |
|||
'''''2-''' Semi-direct'' type : Involved a degree can be commanded when some specific conditions are met. ([[Thrust reversal|Reverse thrust]] on an aircraft) |
|||
#沿X軸前後移動 |
|||
#沿Y軸左右移動 |
|||
#沿Z軸上下移動 |
|||
'''旋轉:''' |
|||
#繞X軸旋轉(翻滾、roll)。 |
|||
#繞Y軸前後旋轉(俯仰、pitch) |
|||
#繞Z軸左右旋轉(偏擺、yaw)。 |
|||
⚫ | |||
== 依運作範圍分類 == |
|||
'''''3-''' Non-direct'' type : Involved a degree when is achieved via the interaction with its environment and cannot be commanded. (Pitching motion of a [[Boat|vessel]] at sea) |
|||
六自由度系統依運作範圍可以分為三類:分別是直接型(Direct)、半直接型(Semi-direct,或稱為條件型)、以及非直接型(Non-direct),這三類都和機械運作需要的時間、執行運作需要的能量、運作是由人或是電腦下達指令無關。 |
|||
#直接型(Direct type):在正常運作下,可以針對某一自由度直接進行控制,不需要特殊的的條件(例如飛機上的[[副翼]])。 |
|||
#半直接型(Semi-direct):在特殊條件成立,才可以針對某一自由度直接進行控制(例如飛機上的[[推力反向器]])。 |
|||
#非直接型(Non-direct):自由度的調整是透過和環境的交互作用來達成,不能直接控制(例如海上船隻的俯仰運動)。 |
|||
有些系統也會出現過渡型的情形。例如[[航天飞机]]在太空中飛行時,因為可以直接控制六個自由度,六自由度都是直接型。但在返回地面,進入大氣層的過程中,因為許多技術限制,無法進行六自由度的直接型控制。 |
|||
==游戏== |
|||
在電腦遊戲中,也會用自由度來說明遊戲中允許活動的程度。 |
|||
[[第一人称射击游戏]](FPS)一般會有五個自由度:前進/後退、往左/往右移動、上/下(跳躍/蹲伏/躺下)、左轉/右轉及往上看/往下看。若遊戲允許讓主角往左/右傾斜身體,則有六個自由度,不過這個不太容易準確的進行控制。 |
|||
Transitional type also exists in some vehicles. For example, when the [[Space Shuttle]] operates in space, the craft is described as fully-direct-six because its six degrees can be commanded. However, when the Space Shuttle is in the earth's atmosphere for its return, the fully-direct-six degrees are not longer applicable for many technical reasons. |
|||
六自由度(6DoF)有時也用來描述允許自由移動的遊戲,可能不一定有六個自由度,例如[[死亡空间2]]、甚至[[萬艦齊發]]及[[终极地带系列]]都允計自由移動。 |
|||
==Game controllers== |
|||
''Six degrees of freedom'' also refers to movement in video game-play. |
|||
也有一些真正有六自由度的遊戲,包括在三軸的平移以及在三軸的旋轉,例如{{le|Shattered Horizon|Shattered Horizon}}、[[天旋地轉]]、{{le|Retrovirus|Retrovirus (PC game)}}、{{le|Miner Wars|Miner Wars}}、{{le|Space Engineers|Space Engineers}}等。 |
|||
[[First-person shooter]] (FPS) games generally provide five degrees of freedom: forwards/backwards, slide left/right, up/down (jump/crouch/lie), yaw (turn left/right), and pitch (look up/down). If the game allows leaning control, then some consider it a sixth DoF; however, this may not be completely accurate, as a lean is a limited partial rotation. |
|||
像{{le|TrackIR|TrackIR}}之類的運動跟踪設備也會用在六自由度的頭部追蹤。像[[飛行模擬器]]及其他車輛模擬器中會用到,在遊戲中需要環顧驾驶舱找到敌人,或者只是避免在遊戲中發生意外。 |
|||
The term ''6DoF'' has sometimes been used to describe games which allow freedom of movement, but do not necessarily meet the full 6DoF criteria. For example, ''[[Dead Space 2]]'', and to a lesser extent, ''[[Homeworld]]'' and ''[[Zone of the Enders (series)|Zone Of The Enders]]'' allow freedom of movement. |
|||
有時也會出現三自由度(3DoF),這表示允許在三個軸平移,但不允許旋轉。 |
|||
Some examples of true 6DoF games, which allow independent control of all three movement axes and all three rotational axes, include ''[[Shattered Horizon]]'', the ''[[Descent (video game)|Descent]]'' franchise, ''[[Retrovirus (PC game)|Retrovirus]]'', ''[[Miner Wars]]'', ''[[Space Engineers]]'', ''[[Forsaken (video game)|Forsaken]]'' and ''[[Overload (video game)|Overload]]'' (from the same creators of ''Descent''). The space MMO ''[[Vendetta Online]]'' also features 6 degrees of freedom. |
|||
PC運動控制器{{le|Razer Hydra|Razer Hydra}}利用二個nunchuck的[[Wii遙控器]]來追踨位置及轉動,每一隻手都有六個自由度。 |
|||
Motion tracking devices such as [[TrackIR]] are used for 6DoF head tracking. This device often finds its places in [[flight simulators]] and other vehicle simulators that require looking around the cockpit to locate enemies or simply avoiding accidents in-game. |
|||
The acronym '''3DoF''', meaning movement in the three dimensions but not rotation, is sometimes encountered. |
|||
The [[Razer Hydra]], a motion controller for PC, tracks position and rotation of two wired [[Wii_Remote#Nunchuk|nunchuck]]s, providing six degrees of freedom on each hand. |
|||
The [[SpaceOrb 360]] is a 6DOF computer input device released in 1996 originally manufactured and sold by the SpaceTec IMC company (first bought by [[Labtec]], which itself was later bought by [[Logitech]]). |
|||
==相關條目== |
==相關條目== |
||
第59行: | 第63行: | ||
* {{le|船舶运动|Ship motions}} |
* {{le|船舶运动|Ship motions}} |
||
== |
==參考資料== |
||
{{reflist}} |
{{reflist}} |
||
{{DEFAULTSORT:Six Degrees Of Freedom}} |
{{DEFAULTSORT:Six Degrees Of Freedom}} |
||
[[Category: |
[[Category:力學]] |
||
[[Category: |
[[Category:生物医学工程]] |
||
[[Category: |
[[Category:建模与仿真]] |
||
[[Category: |
<!--[[Category:电子游戏游戏性]]--> |
||
[[Category:机器人运动学]] |
2024年2月27日 (二) 18:37的最新版本
六自由度(Six degrees of freedom)是指剛體在三維空間中運動的六个自由度,即在纵轴(前—後)、横轴(左—右)和 垂轴(上—下)三個互相垂直的坐標軸上进行的平移和旋轉。这三个轴通常以刚体所面向或行进的方向为参照,比如航空器三主轴。
平移是指与某一参照轴平行的位置变化,三个轴上的平移分别是:
- 纵轴——前进和后退;
- 横轴——左移和右移;
- 垂轴——上升和下降。
旋转是指围绕某一参照轴的姿态变化,三个轴上的旋转分别是:
。
機器人
[编辑]串行及並聯機器手臂系統一般會設定可以以六個自由度的方式幫物體定位,其中包括三個平移自由度以及三個旋轉自由度。因此在機器手臂的組態以及致動器的位置之間會有對應關係,此關係是由正運動學及逆运动学所定義的。
机器人的自由度是其重要的性能指標。其數字一般是指其單臂上旋轉關節的數量,其自由度越高,表示其到達特定位置的靈活度就越高。這個是實務上的度量方式,和表示系統整體定位能力的絶對自由度不同[1]。
2007年時,賽格威的發明者狄恩·卡门為國防高等研究計劃署(DARPA)提出了一個機器手臂的原型[2],共有14個自由度。類人型機器人的自由度至少會有30個,每一個手臂會有六個自由度,每一隻腳有五到六個自由度,而軀幹及頸也有更多的自由度[3]。
工程
[编辑]力學系統中的自由度很重要,特別在生物力学中會需要分析及量測,以確認其是否有六個自由度。六個自由度的量測是透過感測器以及交流或是直流的磁場(或電磁場),感測器會送出位移及旋轉信號給處理器。會透過使用者的需求以及規範,透過軟體得到這些資料。
Ascension Technology Corporation已經開發了小到可以放在活檢針頭內的6DoF設備,可以讓醫生可以進行較好的研究。新的感測器接收發射器(cubic transmitter或flat transmitter)產生的脈衝直流磁場,醫療產品代工生产商可以以此資料進行整合[4]。
像船隻在海上的行動就是一個六自由度的例子。可以描述如下[5]:
平移:
- 沿X軸前後移動
- 沿Y軸左右移動
- 沿Z軸上下移動
旋轉:
- 繞X軸旋轉(翻滾、roll)。
- 繞Y軸前後旋轉(俯仰、pitch)
- 繞Z軸左右旋轉(偏擺、yaw)。
依運作範圍分類
[编辑]六自由度系統依運作範圍可以分為三類:分別是直接型(Direct)、半直接型(Semi-direct,或稱為條件型)、以及非直接型(Non-direct),這三類都和機械運作需要的時間、執行運作需要的能量、運作是由人或是電腦下達指令無關。
- 直接型(Direct type):在正常運作下,可以針對某一自由度直接進行控制,不需要特殊的的條件(例如飛機上的副翼)。
- 半直接型(Semi-direct):在特殊條件成立,才可以針對某一自由度直接進行控制(例如飛機上的推力反向器)。
- 非直接型(Non-direct):自由度的調整是透過和環境的交互作用來達成,不能直接控制(例如海上船隻的俯仰運動)。
有些系統也會出現過渡型的情形。例如航天飞机在太空中飛行時,因為可以直接控制六個自由度,六自由度都是直接型。但在返回地面,進入大氣層的過程中,因為許多技術限制,無法進行六自由度的直接型控制。
游戏
[编辑]在電腦遊戲中,也會用自由度來說明遊戲中允許活動的程度。
第一人称射击游戏(FPS)一般會有五個自由度:前進/後退、往左/往右移動、上/下(跳躍/蹲伏/躺下)、左轉/右轉及往上看/往下看。若遊戲允許讓主角往左/右傾斜身體,則有六個自由度,不過這個不太容易準確的進行控制。
六自由度(6DoF)有時也用來描述允許自由移動的遊戲,可能不一定有六個自由度,例如死亡空间2、甚至萬艦齊發及终极地带系列都允計自由移動。
也有一些真正有六自由度的遊戲,包括在三軸的平移以及在三軸的旋轉,例如Shattered Horizon、天旋地轉、Retrovirus、Miner Wars、Space Engineers等。
像TrackIR之類的運動跟踪設備也會用在六自由度的頭部追蹤。像飛行模擬器及其他車輛模擬器中會用到,在遊戲中需要環顧驾驶舱找到敌人,或者只是避免在遊戲中發生意外。
有時也會出現三自由度(3DoF),這表示允許在三個軸平移,但不允許旋轉。
PC運動控制器Razer Hydra利用二個nunchuck的Wii遙控器來追踨位置及轉動,每一隻手都有六個自由度。
相關條目
[编辑]參考資料
[编辑]- ^ Paul, Richard P., Robot Manipulators: Mathematics, Programming, and Control, MIT Press, 1981.
- ^ Luke, a new prosthetic arm for soldiers. ted.com. 2007-03-01 [2017-02-26]. (原始内容存档于2014-02-18).
- ^ Craig, John J., Introduction to Robotics: Mechanics and Control, Addison-Wesley, 1986.
- ^ Medical News Today. (页面存档备份,存于互联网档案馆) Ascension Develops World's Smallest Six Degrees-of-Freedom Sensor For Emerging Medical Procedures. 25 Aug 2008
- ^ Summary of ship movement (PDF). [2017-03-11]. (原始内容存档 (PDF)于2011-11-25).